Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9920 và 999910
9920 = ( 992)10 = 980110
Vì 9801 < 9999
Nên 9920 < 999910
b) 3223 và 2332
3223 > 3222 => 3222 = ( 32 )111 = 9111
2332 < 2333 => 2333 = ( 23)111 = 8111
Vì 9 > 8 nên 3223 > 2332
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{999}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{999}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)
\(A=1-\frac{1}{2^{1000}}< 1=B\)
`Answer:`
Đặt \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)
Ta thấy:
\(\frac{1}{1.2}>\frac{1}{2^2}\)
\(\frac{1}{2.3}>\frac{1}{2^3}\)
\(\frac{1}{3.4}>\frac{1}{2^4}\)
...
\(\frac{1}{999.1000}>\frac{1}{2^{1000}}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)
\(\Rightarrow A< 1-\frac{1}{1000}\)
Mà \(\frac{1}{1000}>0\)
\(\Rightarrow1-\frac{1}{1000}< 1\)
\(\Rightarrow C< B\)
\(\Rightarrow A< C< B\)
\(\Rightarrow A< B\)
xét hieeij A - B chưa làm thử đi nó mà dương thì A > B và ngược lại
Ta có:
\(2A=2+2^2+2^3+...+2^{101}\)
=>\(2A-A=\left(2+2^2+..+2^{101}\right)-\left(1+2+2^2+..+2^{100}\right)\)
=>\(A=2^{101}-1\)
Vì \(2^{101}-1>2^{100}-1\) nên A>B
Vậy A>B
Vì A có 2100 và được cộng thêm, B có 2100 phải trừ 1 nên A > B.
ngắn gọn thôi