\(\dfrac{79^{2011} - 5}{79^{2011} + 8}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2.A=\(\dfrac{43.11}{2011^{2013}}\)+\(\dfrac{79}{2011^{2013}}\)=\(\dfrac{43.11+79}{2011^{2013}}\)

B=\(\dfrac{79.11}{2011^{2013}}\)+\(\dfrac{43}{2011^{2013}}\)=\(\dfrac{79.11+43}{2011^{2013}}\)

Ta có: 43.11+79=43.(10+1)+79=43.10+43+79=430+122

79.11+43=79.(10+1)+43=79.10+79+43=790+122

Vì 430+122<790+122 nên 43.11+79<79.11+43 (1)

Mà 20112013<20112013 (2)

Từ (1) và (2) suy ra A<B

3. A=\(\dfrac{2010.2012}{2011.2011}\)

Vì B<1 nên B>\(\dfrac{2010}{2012}\)=\(\dfrac{2010.2012}{2012.2012}\)

Vì 2010.2012=2010.2012; 2011.2011<2012.2012 nên B>A

4. A=\(\dfrac{3n}{3\left(2n+1\right)}\)=\(\dfrac{3n}{6n+3}\)

Vì 6n+3=6n+3; 3n<3n+1 nên A<B

2 tháng 4 2017

Ta có:

\(A=\dfrac{2010}{2011}+\dfrac{2011}{2012}\)

\(B=\dfrac{2010+2011}{2011+2012}\)

\(=\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)

Áp dụng tính chất \(\dfrac{a}{b}>\dfrac{a}{b+m}\) ta có:

\(\left\{{}\begin{matrix}\dfrac{2010}{2011}>\dfrac{2010}{2011+2012}\\\dfrac{2011}{2012}>\dfrac{2011}{2011+2012}\end{matrix}\right.\)

\(\Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)

Hay \(\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010+2011}{2011+2012}\)

Vậy \(A>B\)

15 tháng 3 2020

Ta có:\(\frac{2-x}{2011}-1=\frac{1-x}{2012}-\frac{x}{2013}\)

<=> \(\frac{2013-x}{2011}-1=\frac{2013-x}{2012}-\frac{x}{2013}\)

<=>\(\frac{2013-x}{2011}-\frac{x-2013}{2013}-\frac{2013-x}{2012}=0\)

<=>\(\left(2013-x\right)\left(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2012}\right)=0\)

<=>\(2013-x=\frac{0}{\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2012}}=0\)

<=>\(x=0+2013=2013\)

Vậy \(x=2013\)

16 tháng 4 2017

Mai Quỳnh

B = 2011/2012+2012/2013 > 2011/2013+ 2012/2013

= 2011+2012/2013>2011+2012/ 2012+2013

= A.

Vậy B>A

Ta có:\(A=\dfrac{2011+1012}{2012+2013}\)

\(A=\dfrac{2011}{4023}+\dfrac{2012}{4023}< \dfrac{2011}{2012}+\dfrac{2012}{2013}=B\)

=> A<B

Vậy A<B

19 tháng 4 2017

Bài 1:

Ta có: \(A=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)

Dễ thấy:

\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)

\(\Rightarrow A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< B=\dfrac{2011}{2012}+\dfrac{2012}{2013}\)

Bài 2:

\(S=\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{37\cdot40}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{37\cdot40}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)=\dfrac{1}{3}\cdot\dfrac{9}{40}=\dfrac{3}{40}< \dfrac{1}{3}\)

6 tháng 3 2018

a) Giải

Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)

\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)

\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)

\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)

6 tháng 3 2018

b) Giải

Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)

\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)

Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)

\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)

Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0

\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)

\(\Rightarrow2011A>2011B\)

\(\Rightarrow A>B\)

Vậy A > B.

26 tháng 5 2017

DỄ THẤY A<1

B=(2011.2013+2012.2012)/2012.2013

ta có 2011.2013+2012.2012-2012.2013=2012.2012+2013.(2011-2012)

=2012.2012-2013

suy ra 2011.2013+2012.2012>2012.2013

=> B >1 mà A <1

SUY RA B>A

26 tháng 5 2017

B = 2011/2012+2012/2013 > 2011/2013+ 2012/2013 = 2011+2012/2013>2011+2012/ 2012+2013= A.

Vậy B>A
28 tháng 2 2019

Ta có

A=\(\dfrac{2011+2012}{2012+2013}\)=\(\dfrac{2011}{2012+2013}\)+\(\dfrac{2012}{2012+2013}\)(1)

B=\(\dfrac{2011}{2012}\)+\(\dfrac{2012}{2013}\)(2)

=>A>B

A lớn

B nhỏ

28 tháng 2 2019

gõ nhầm

phải là A<B

A nhỏ

B lớn