Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\sqrt{7}+\sqrt{15}vs7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)
=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)
\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
a) Ta có 290>289
<=> \(\sqrt{290}\) > \(\sqrt{289}\)
<=> \(\sqrt{290}\) > 17
Vậy ..........
\(a,290>289\)
\(\Rightarrow\sqrt{290}>\sqrt{289}\)
\(\Rightarrow\sqrt{290}>17\)
\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
a) Ta có \(\sqrt{170}>\sqrt{169}\\\)
mà \(\sqrt{169}=13\)
=> \(\sqrt{170}>13\)
b) Ta có \(\sqrt{6}< \sqrt{9}\)
mà \(\sqrt{9}=3\)
=> \(\sqrt{6}< 3\)
c) ta có \(\sqrt{226}>\sqrt{225}\)
mà \(\sqrt{225}=15\)
=>\(\sqrt{226}>15\)
d) \(\sqrt{12}>\sqrt{7}\)
e)
Ta có\(\sqrt{150}< \sqrt{180}\)
mà \(\sqrt{150}=5\sqrt{6}\)
\(\sqrt{180}=6\sqrt{5}\)
=> \(5\sqrt{6}< 6\sqrt{5}\)
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
a)
Ta có
\(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
b) Ta có
\(\sqrt{17}+\sqrt{5}+9>\sqrt{16}+\sqrt{4}+9=4+2+9=15\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+9>15\)
Mặt khác
\(\sqrt{115}< \sqrt{225}=15\)
Mà \(\sqrt{17}+\sqrt{5}+9>15\)
\(\Rightarrow\sqrt{115}< \sqrt{17}+\sqrt{5}+9\)
ta có \(\sqrt{7}< \sqrt{9}\)
và \(\sqrt{15}< \sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
mà \(\sqrt{9}+\sqrt{16}=3+4=7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)