\(\sqrt{7}\) + \(\sqrt{15}\) và 7

b) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

a)

Ta có

\(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

b) Ta có

 

\(\sqrt{17}+\sqrt{5}+9>\sqrt{16}+\sqrt{4}+9=4+2+9=15\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+9>15\)

Mặt khác

\(\sqrt{115}< \sqrt{225}=15\)

Mà \(\sqrt{17}+\sqrt{5}+9>15\)

\(\Rightarrow\sqrt{115}< \sqrt{17}+\sqrt{5}+9\)

30 tháng 8 2016

ta có \(\sqrt{7}< \sqrt{9}\)

và \(\sqrt{15}< \sqrt{16}\)

=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

mà \(\sqrt{9}+\sqrt{16}=3+4=7\)

=> \(\sqrt{7}+\sqrt{15}< 7\)

5 tháng 11 2017

a ) \(\sqrt{7}+\sqrt{15}vs7\)

=> \(\sqrt{7}+\sqrt{15}< 7\)

b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)

=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

5 tháng 11 2017

b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)

\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

26 tháng 7 2019

a) Ta có 290>289

<=>  \(\sqrt{290}\)   >       \(\sqrt{289}\)

<=>  \(\sqrt{290}\)   >        17

Vậy ..........

26 tháng 7 2019

\(a,290>289\)

\(\Rightarrow\sqrt{290}>\sqrt{289}\)

\(\Rightarrow\sqrt{290}>17\)

\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

22 tháng 10 2016

a] < b] < c] >

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

30 tháng 8 2016

a) Ta có \(\sqrt{170}>\sqrt{169}\\\)

mà \(\sqrt{169}=13\)

=> \(\sqrt{170}>13\)

b) Ta có \(\sqrt{6}< \sqrt{9}\)

mà \(\sqrt{9}=3\)

=> \(\sqrt{6}< 3\)

c) ta có \(\sqrt{226}>\sqrt{225}\)

mà \(\sqrt{225}=15\)

=>\(\sqrt{226}>15\)

d) \(\sqrt{12}>\sqrt{7}\)

e)

Ta có\(\sqrt{150}< \sqrt{180}\)

mà \(\sqrt{150}=5\sqrt{6}\)

\(\sqrt{180}=6\sqrt{5}\)

=> \(5\sqrt{6}< 6\sqrt{5}\)

10 tháng 10 2017

a) \(15=\sqrt{225}\)

\(\sqrt{235}=\sqrt{235}\)

vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)

   vay \(15< \sqrt{235}\)

10 tháng 10 2017

Câu b) 

Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)

\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)

Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)

23 tháng 6 2018

Em mới học lớp 6 thôi để em thử àm xem nó ra sao:

a)<

b)<

c)<

e)<

10 tháng 12 2016

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)