Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~
a \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)
\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)
vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)
b \(6=\sqrt{36}\)
\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)
c \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)
\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)
vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)
\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)
a) \(\sqrt{2017}-2\sqrt{2016}=\sqrt{2017}-\sqrt{8064}< 0< \sqrt{2016}\)
b) \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=8=\sqrt{64}>\sqrt{61}\)
c) \(\left(\sqrt{2016}+\sqrt{2014}\right)^2=4030+\sqrt{2014.2016}\)
\(\left(2\sqrt{2015}^2\right)=4030+\sqrt{2015.2015}\)
C/m được: \(\sqrt{2014.2016}< \sqrt{2015.2015}\)
\(\Rightarrow\left(\sqrt{2016}+\sqrt{2014}\right)^2< \left(2\sqrt{2015}\right)^2\)
\(\Rightarrow\sqrt{2014}+\sqrt{2016}< 2\sqrt{2015}\)
d) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=7=8-1=\sqrt{64}-1< \sqrt{65}-1\)
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....
Bài này dễ lắm
Câu 1
\(-\sqrt{5}\) lớn hơn \(-2\) . Vì
\(-\sqrt{5}=-2,2236067977\)
\(-2=-2\)
Câu 2
\(\sqrt{2}+\sqrt{3}\) bé hơn \(\sqrt{10}\) . Vì
\(\sqrt{2}+\sqrt{3}=3,146264\)
\(\sqrt{10}=3,16227766\)
Câu 3
\(8\) lớn hơn \(\sqrt{15}+\sqrt{17}\)
\(8=8\)
\(\sqrt{15}+\sqrt{17}=7,996088972\)
a , \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
a,Ta có:\(\sqrt{3\sqrt{2}}=\sqrt{\sqrt{18}}\)
\(\sqrt{2\sqrt{3}}=\sqrt{\sqrt{12}}\)
Vì 12<18\(\Rightarrow\sqrt{12}< \sqrt{18}\)
\(\Rightarrow\sqrt{\sqrt{12}}< \sqrt{\sqrt{18}}\) hay \(\sqrt{2\sqrt{3}}< \sqrt{3\sqrt{2}}\)
b,Vì \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1\)
\(\Rightarrow\sqrt{10}+\sqrt{17}+1>3+4+1 \)
\(\Rightarrow\sqrt{10}+\sqrt{17}+1>8\)
\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{64}\)
Mà \(\sqrt{64}>\sqrt{61}\)
\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)