Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B
Lời giải:
\(2\sqrt{12}>2\sqrt{9}=2.3=6>3\)
\(\sqrt{6}> \sqrt{5}\)
\(\Rightarrow 2\sqrt{12}+\sqrt{6}> 3+\sqrt{5}\)
a) 5 và 3√123:
Ta có 5 = 3√125; vì 125 > 123 ⇒ 3√125 > 3√123.Vậy 5 > 3√123
b) Ta có:
53\(\sqrt{ }\)6 = 3\(\sqrt{ }\)53.6 = 3\(\sqrt{ }\)125.6 = 3\(\sqrt{ }\)750
63\(\sqrt{ }\)5 = 3\(\sqrt{ }\)63.5 = 3\(\sqrt{ }\)216.5 = 3\(\sqrt{ }\)1080
Vì 750 < 1080 \(\Rightarrow\)3\(\sqrt{ }\)750 < 3\(\sqrt{ }\)1080 . Vậy 53\(\sqrt{ }\)6 < 63\(\sqrt{ }\)5.
a) \(\sqrt[3]{123}\) và \(5\)
Ta có : \(5^3=125\)
\(\left(\sqrt[3]{123}\right)^3=123\)
Vì \(125>123\)
\(\implies\) \(\sqrt[3]{125}>\sqrt[3]{123}\)
\(\iff\) \(5>\sqrt[3]{123}\)
Vậy \(5>\sqrt[3]{123}\)
b) \(5\sqrt[3]{6}\) và \(6\sqrt[3]{5}\)
Ta có : \(\left(5\sqrt[3]{6}\right)^3=5^3.\left(\sqrt[3]{6}\right)^3=125.6=750\)
\(\left(6\sqrt[3]{5}\right)=6^3.\left(\sqrt[3]{5}\right)^3=216.5=1080\)
Vì \(750< 1080\)
\(\implies\)\(\sqrt[3]{750}< \sqrt[3]{1080}\)
\(\iff\) \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)
Vậy \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)