Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{225}-\frac{1}{\sqrt{5}}-1=15-\frac{1}{\sqrt{5}}-1=14-\frac{1}{\sqrt{5}}\)
\(B=\sqrt{196}-\frac{1}{\sqrt{6}}=14-\frac{1}{\sqrt{6}}\)
vì \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)nên A<B
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
ta có\(\sqrt{625}\)=25
\(\sqrt{576}\)=24
\(\Rightarrow\)24-1/\(\sqrt{6}\)+1
\(\Rightarrow\)24+-1/\(\sqrt{6}\)
\(\Rightarrow\)25-1/\(\sqrt{6}\)
\(\Rightarrow\)A<B
Bài 1:
\(N=\frac{9}{\sqrt{x}-5}\)
Để N có giá trị nguyên.
\(\Rightarrow\frac{9}{\sqrt{x}-5}\) có giá trị nguyên.
\(\Rightarrow9⋮\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)\)
\(\Rightarrow\sqrt{x}-5\in\left\{1;3;9;-1;-3;-9\right\}.\)
\(\Rightarrow\sqrt{x}\in\left\{6;8;14;4;2;-4\right\}\)
\(\Rightarrow x\in\left\{36;64;196;16;4\right\}.\)
Vậy \(x\in\left\{36;64;196;16;4\right\}.\)
Chúc bạn học tốt!