K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

xem trên mạng

19 tháng 7 2017

Ta có : \(\frac{x+y}{x-y}=\frac{\left(x+y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x^2+2xy+y^2}{x^2-y^2}>\frac{x^2+y^2}{x^2-y^2}\)

Nên \(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}\) Hay \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)  (\(\frac{a}{b}>\frac{c}{d}\) thì \(\frac{b}{a}< \frac{d}{c}\) )

Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

19 tháng 7 2017

\(Ta\)\(có\)\(:\)\(\frac{x+y}{x-y}=\frac{\left(x+y\right)}{\left(x-y\right)}\frac{\left(x+y\right)}{\left(x+y\right)}=\frac{x^2+2xy+y2}{x^2-y^2}\)\(>\frac{x^2+y^2}{x^2-y^2}\)

\(Nên\)\(:\)\(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}hay\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)\(\left(\frac{a}{b}>\frac{c}{d}thì\frac{b}{a}< \frac{d}{c}\right)\)

\(Vậy\)\(:\)\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Có thể thế vào: x=2;y=1.Ta có:

\(\frac{x-y}{x+y}=\frac{2-1}{2+1}=\frac{1}{3}\) và \(\frac{x^2-y^2}{x^2+y^2}=\frac{2^2-1^2}{2^2+1^2}=\frac{3}{5}\)

\(\Rightarrow\frac{1}{3}< \frac{3}{5}\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

cái này mik giải để giúp mọi người nếu bạn cho rằng sai thì giải thử xem.

24 tháng 1 2017

a) \(\frac{x-y}{x+y}=\frac{x^2-y^2}{\left(x+y\right)^2}\) Dễ thấy \(\frac{x^2-y^2}{\left(x+y\right)^2}< \frac{x^2-y^2}{x^2+y^2}\)

\(\left(x+y\right)^2>x^2+y^2\) (với x > 0, y > 0)

Nên \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

b) \(\frac{\left(a+b\right)^2}{a^2-b^2}=\frac{a+b}{a-b}=\frac{a^2-b^2}{\left(a-b\right)^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\) (với a > 0, b > 0)

Vậy \(\frac{\left(a+b\right)^2}{a^2-b^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\)

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

21 tháng 4 2018

Ta có: \(a>b>0\)

   \(\Rightarrow a^2>b^2\)

\(\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow x< y\)

1 tháng 11 2018

\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)

\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)

Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2