Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
đặt A = 1 + 2 + 22 + ... + 280
2A = 2 + 22 + 23 + ... + 281
2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )
A = 281 - 1 > 281 - 2
e)
đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}< 1\)
\(\Rightarrow A< 29\)
So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12
a. \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-4}{9}+\frac{5}{6}\right):\frac{7}{12}\)
\(=1.\frac{7}{12}:\frac{7}{12}\)
\(=1\)
b.
\(\frac{5}{9}.\frac{8}{11}+\frac{5}{9}.\frac{9}{11}-\frac{5}{9}.\frac{6}{11}\)
\(=\frac{5}{9}.\left(\frac{8}{11}+\frac{9}{11}-\frac{6}{11}\right)\)
\(=\frac{5}{9}.1\)
\(=\frac{5}{9}\)
Tk mk nha!
b) \(=\frac{5}{9}.\left(\frac{8}{11}+\frac{9}{11}-\frac{6}{11}\right)\)
\(=\frac{5}{9}.1\)
\(=\frac{5}{9}\)
a)\(\frac{11^4.6-11^5}{11^4-11^5}:\frac{9^8.3-9^9}{9^8.5+9^8.7}\)
\(=1.6:\frac{9^8.3-9^8.9}{9^8.\left(5+7\right)}\)
\(=6:\frac{9^8.\left(3-9\right)}{9^8.12}\)
\(=6:\frac{9^8.\left(-6\right)}{9^8.12}\)
\(=6:\left(-\frac{6}{12}\right)\)
\(=6:\left(-\frac{1}{2}\right)\)
\(=-12\)
b) 3/5 : ( -1/5-1/6)+3/5:(-1/3-16/15) ( mình chuyển về ps luôn )
=3/5: (-11/30) + 3/5 : (-7/5)
=3/5:[-11/30+(-7/5)]
=3/5:53/30
=18/53
c) (1/2-13/14):5/7-(-2/21+1/7):5/7
= -3/7:5/7-1/21:5/7
=(-3/7-1/21):5/7
=-10/21:5/7
=-2/3
câu b vá c mình làm tắt nha. chúc bạn học tốt
\(A=\left(-\frac{1}{2013}-\frac{3}{11^2}-\frac{5}{11^3}-\frac{3}{11^4}\right)-\frac{4}{11^4};B=\left(-\frac{1}{2013}-\frac{3}{11^2}-\frac{5}{11^3}-\frac{3}{11^2}\right)-\frac{4}{11^2}\)
Vì 114 > 112 nên \(\frac{4}{11^4}<\frac{4}{11^2}\) => \(-\frac{4}{11^4}>-\frac{4}{11^2}\) => A > B
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)
a.
\(\frac{11^4\times6-11^5}{11^4-11^5}=\frac{11^4\times\left(6-11\right)}{11^4\times\left(1-11\right)}=\frac{-5}{-10}=\frac{1}{2}\)
b.
\(\frac{9^8\times3-3^{18}}{9^8\times5+9^8\times7}=\frac{9^8\times3-\left(3^2\right)^9}{9^8\times\left(5+7\right)}=\frac{9^8\times3-9^9}{9^8\times12}=\frac{9^8\times\left(3-9\right)}{9^8\times12}=-\frac{6}{12}=-\frac{1}{2}\)
c.
\(\frac{10^5-10^5\times3}{10^5\times11}=\frac{10^5\times\left(1-3\right)}{10^5\times11}=-\frac{2}{11}\)
Chúc bạn học tốt
Xem lại đề
Có: \(A-B=\frac{9}{11^4}+\frac{5}{11^5}-\left(\frac{5}{11^4}+\frac{9}{11^5}\right)\)
\(=9\left(\frac{1}{11^4}-\frac{1}{11^5}\right)-\left[5\left(\frac{1}{11^4}-\frac{1}{11^5}\right)\right]\)
\(=4\left(\frac{1}{11^4}-\frac{1}{11^5}\right)\)>0
Vậy A>B.