K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

xét hieeij A - B chưa làm thử đi nó mà dương thì A  > B và ngược lại

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim 

1 tháng 10 2016

Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}.19}{19^{32}.19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)Vậy A > B

 

1 tháng 10 2016

Sửa lại thành \(\frac{19^{31}+19}{19^{32}+19}\) nha

13 tháng 3 2020

\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)

\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)

từ (1) and (2)

=>19A>19B

=>A>B

5 tháng 8 2016

ớ chết, mk nhầm, lm lại nha

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)

\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)

=> \(S< \frac{4}{5}\)

5 tháng 8 2016

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S< 30.\frac{1}{60}\)

\(S< \frac{1}{2}< \frac{4}{5}\)

\(S< \frac{4}{5}\)

23 tháng 4 2019

Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)

         \(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)

Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)

 Ta có: \(\frac{1}{31}>\frac{1}{45}\)

           \(\frac{1}{32}>\frac{1}{45}\)

           ....................

          \(\frac{1}{45}=\frac{1}{45}\)

\(\Rightarrow B>\frac{1}{45}.15\)

\(\Rightarrow B>\frac{1}{3}\)

Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)

Ta có: \(\frac{1}{46}>\frac{1}{90}\)

           \(\frac{1}{47}>\frac{1}{90}\)

          .....................

         \(\frac{1}{90}=\frac{1}{90}\)

\(\Rightarrow C>\frac{1}{90}.45\)

\(\Rightarrow C>\frac{1}{2}\)

\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)

Hay \(A>\frac{5}{6}\left(1\right)\)

Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)

Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)

Ta có: \(\frac{1}{31}< \frac{1}{30}\)

          . ...................

           \(\frac{1}{59}< \frac{1}{30}\)

\(\Rightarrow D< \frac{1}{30}.60\)

\(\Rightarrow D< \frac{1}{2}\)

Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)

Ta có: \(\frac{1}{60}=\frac{1}{60}\)

             .................

          \(\frac{1}{90}< \frac{1}{60}\)

\(\Rightarrow E< \frac{1}{60}.31\)

\(\Rightarrow E< \frac{31}{60}< 1\)

\(\Rightarrow E< 1\)

\(\Rightarrow E+D< 1+\frac{1}{2}\)

Hay \(A< \frac{3}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)

23 tháng 4 2019

Mình làm hơi ngáo có gì thì cứ nói 

13 tháng 9 2016

to lam ko biết là đúng hay sai đây đấy

bỏ hai số 5 nằm ở  2 mẫu số 

 ta có biểu thức 1

(19^30+5).(19^32)/19^31.19^32  

= (19^30+5).(19^31.19)/19^31.19^32

biểu thức 2

(19^31+5).19^31/19^31.19^32

=(19^30+5).(19.19^31)/19^31.19^32

suy ra  bằng nhau