Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\frac{10}{1}=10\)
mấy câu còn lại bạn tự làm nốt nhé mk ban rồi
a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))
=\(\sqrt{2006}^2-\sqrt{2005}^2\)
=2006-2005
=1
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)
\(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}=\frac{3}{5}\sqrt{35}+\sqrt{10}< \sqrt{35}+\sqrt{10}\)
\(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{6+2\sqrt{5}}}{2}=\frac{\sqrt{5}+1}{2}\)
\(\frac{2+\sqrt{2}}{2-\sqrt{2}}+\frac{2-\sqrt{2}}{2+\sqrt{2}}=\frac{\left(2+\sqrt{2}\right)^2+\left(2-\sqrt{2}\right)^2}{2}=\frac{12}{2}=6>4\sqrt{2}\) (do \(36>32\))
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\frac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7}+1-\left(\sqrt{7}-1\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}< \sqrt{3}\)