Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người ơi, lm xong bài này trong tối nay hộ mình cái, mình càn gấp lắm rùi
\(B=\frac{3^{122}}{3^{124}+1}=\frac{3^{123}}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+1}=A\)
Do đó \(A>B\).
A=\(\frac{a^n-1}{a^n}\)=\(1-\frac{1}{a^n}\)
B=\(\frac{a^n}{a^n+1}\)=\(\frac{a^n+1-1}{a^n+1}\)=\(1-\frac{1}{a^n+1}\)
vì 1/an>1/an+1 suy ra 1-1/an<1-1/an+1 suy ra A<B
chúc bạn học tốt!!!!
Ta có : \(\frac{a^n-1}{a^n}\),\(\frac{a^n}{a^n+1}\)
Quy đồng , ta có :
\(A=\frac{\left(a^n-1\right).1}{a^n+1}\);\(B=\frac{a^n}{a^n+1}\)
=>\(A=\left(a^n-1\right).1;B=a^n\)
=> \(A=a^n-1;B=a^n\)
ta có:
th1 : nếu a hoặc n là âm thì :
\(a^n-1< a^n\)
th2: nếu cả a và n đều là dương hoặc âm thì :
\(a^n-1< a^n\)
VẬy...
D = \(\frac{2^{2004}+1}{2^{2003}+1}\)=\(\frac{2^{2003}+2}{2^{2004}+2}\)
C = \(\frac{2^{2005}+3}{2^{2006}+3}\)= \(\frac{2^{2005}+2}{2^{2006}+2}\)
Vậy C>D
mình chuyển 1 hạng tử của 3 từ bên d sang c nên ta được pt như trên
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)
\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)
\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
So easy
Ta thấy \(10^{50}>10^{50}-3\)
\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(A< B\)
Ta thấy:
A = \(\frac{20162017}{20162016}\) và B = \(\frac{20152016}{20152015}\)
A = \(\frac{20162016}{20162016}\)+ \(\frac{1}{20162016}\) = \(1\) + \(\frac{1}{20162016}\)
B = \(\frac{20152015}{20152015}\) + \(\frac{1}{20152015}\)= \(1\) + \(\frac{1}{20152015}\)
Vì: \(\frac{1}{20162016}\) \(< \) \(\frac{1}{20152015}\)
Nên: \(A\) \(< \) \(B\)
~ HokT~
A>b mình nghĩ vậy