Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\cdot2000}{\left(2000^{2015}-1\right)\cdot2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}>\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
Xét A trước ta có
2000A=2000.2000^2014/2000^2015-1
2000A=2000^2015-1+1999/2000^2015-1
2000A=1+1999/2000^2015-1
2000B=2000^2015.2000/2000^2016-1
2000B=2000^2016-1+1999/2000^2016-1
2000B=1+1999/2000^2016-1
Ta thấy 2000A>2000B
suy ra A>B
mik có cách này
nếu bạn hay quyên thế thì ghi những bài toán đáng nhớ vào 1 quyển sổ
lúc nào quyên thì dở ra
hiệu quả hơn đó !~
b, 2000A = \(\frac{2000\left(2000^{2015}+1\right)}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+2000}{2000^{2016}+1}\)
= \(\frac{\left(2000^{2016}+1\right)+1999}{2000^{2016}+1}\)
= \(\frac{2000^{2016}+1}{2000^{2016}+1}\) + \(\frac{1999}{2000^{2016}+1}\)
= 1 + \(\frac{1999}{2000^{2016}+1}\)
2000B = \(\frac{2000\left(2000^{2014}+1\right)}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+2000}{2000^{2015}+1}\)
= \(\frac{\left(2000^{2015}+1\right)+1999}{2000^{2015}+1}\)
= \(\frac{2000^{2015}+1}{2000^{2015}+1}\) + \(\frac{1999}{2000^{2015}+1}\)
= 1 + \(\frac{1999}{2000^{2015}+1}\)
So sanh
câu b tiếp
So sánh 2000A với 2000B
Vì \(\frac{1999}{2000^{2016}+1}\) < \(\frac{1999}{2000^{2015}+1}\)
→ 2000A< 2000B
→ A<B
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
\(y=\frac{2014}{\frac{2015}{\frac{2015}{2016}}}=\frac{2014}{2015}.\frac{2015}{2016}=\frac{1007}{1008}=1-\frac{1}{2008}\)
\(\frac{2014}{2015}=1-\frac{1}{2015}\)
Vì \(\frac{1}{2008}>\frac{1}{2015}\)nên \(\frac{1007}{1008}< \frac{2014}{2015}\)
Vậy A>y
Bây giờ mình mới thấy dễ:
Ta có: \(A=\frac{2000^{2014}}{2000^{2015}-1}=\frac{2000^{2014}\times2000}{\left(2000^{2015}-1\right)\times2000}=\frac{2000^{2015}}{2000^{2016}-2000}\)
Vì có cùng tử số và 20002016-2000 < 20002016-1 nên \(\frac{2000^{2015}}{2000^{2016}-2000}\)> \(\frac{2000^{2015}}{2000^{2016}-1}\)
nên A>B
Nhớ có lời giải nha mấy bạn!! thanks nhìu