K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

A = 6cs + 7cs - 1 = 7cs              

B = 12cs - 2 = 12 cs

==>A>B

9 tháng 5 2018

\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)

\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)

Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)

=> 10A>10B

=>A>B

9 tháng 5 2018

k đúng cho mình đi, mình giải cho.

18 tháng 3 2019

ta có :

\(A=\frac{10^{2019}+1}{10^{2018}+1}=\frac{10^{2018}.10+1}{10^{2018}+1}=\frac{10}{10^{2018}+1}\)

\(B=\frac{10^{2018}+1}{10^{2017}+1}=\frac{10^{2017}.10+1}{10^{2017}+1}=\frac{10}{10^{2017}+1}\)

Do \(10^{2017}+1< 10^{2018}+1\Rightarrow\frac{10}{10^{2017}+1}>\frac{10}{10^{2018}+1}\)

\(\Rightarrow A< B\)

24 tháng 6 2019

\(M=\frac{10^{2018}+2}{10^{2018}+1}=\frac{10^{2018}+1+1}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{1}{10^{2018}+1}=1+\frac{1}{10^{2018}+1}\)

\(N=\frac{10^{2018}}{10^{2018}-3}=\frac{10^{2018}-3+3}{10^{2018}-3}=\frac{10^{2018}-3}{10^{2018}-3}+\frac{3}{10^{2018}-3}=1+\frac{3}{10^{2018}-3}\)

Ta có: \(\frac{1}{10^{2018}+1}< \frac{1}{10^{2018}-3}< \frac{3}{10^{2018}-3}\)

\(\Rightarrow N>M\)

25 tháng 6 2019

\(M=\frac{10^{2018}+2}{10^{2018}+1}=\frac{10^{2018}+1+1}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{1}{10^{2018}+1}=1+\frac{1}{10^{2018}+1}.\)

\(N=\frac{10^{2018}}{10^{2018}-3}=\frac{10^{2018}-3+3}{10^{2018}-3}=\frac{10^{2018}-3}{10^{2018}-3}+\frac{3}{10^{2018}-3}=1+\frac{3}{10^{2018}-3}\)

Ta có\(\frac{1}{10^{2018}+1}< \frac{1}{10^{2018}-3}< \frac{3}{10^{2018}-3}\)

\(\Leftrightarrow N>M\)

16 tháng 5 2019

26 tháng 2 2019

Ta có:

10A=\(\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)

10B=\(\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1}{10^{2019}+1}+\frac{9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)

do 1=1 và \(\frac{9}{10^{2018}+1}>\frac{9}{10^{2019}+1}\)

\(\Rightarrow\)A>B

Vậy A>B

chúc bạn học tốt!

26 tháng 3 2019

\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)

\(=1+\frac{18162}{10^{2017}+2018}\)

\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)

\(=1+\frac{18162}{10^{2018}+2018}\)

Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)

=> 10A > 10B

=> A > B

a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)\(\frac{9^{19}+1+8}{9^{20}+1+8}\)\(\frac{9^{19}+9}{9^{20}+9}\)\(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)\(\frac{9^{18}+1}{9^{19}+1}\)= A

                                                       Vậy A > B

b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)\(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)\(\frac{10^{2018}-10}{10^{2019}-10}\)\(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)\(\frac{10^{2017}-1}{10^{2018}-1}\)= A

                                                                         Vậy A < B.

                    NHỚ K CHO MK VỚI NHÉ !!!!!!!!

22 tháng 2 2018

a A lon hon B

12 tháng 5 2020

Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)

Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)

Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)

\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)

hay \(10A>10B\)\(\Rightarrow A>B\)

Vậy \(A>B\)

12 tháng 5 2020

Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)

Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)

Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)

\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B

Làm khác bạn kia 1 xíu à