Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)
b/ Ta có
\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)
\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
c/ Đặt \(10^7=a\)thì ta có
\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)
Giả sử A>B thì ta có
\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)
\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)
\(\Leftrightarrow617a+313>0\)(đúng)
Vậy A>B
c/ Đặt \(10^{1991}=a\)thì ta có
\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)
Giả sử A>B thì ta có
\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)
\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)
\(\Leftrightarrow-81a>0\)(sai)
Vậy A < B
a/ Thì quy đồng là ra nhé
a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh
\(M=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(N=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta có \(10^8-7>10^7-8\) \(=>\frac{13}{10^8-7}< \frac{13}{10^7-8}\) \(=>M< N\)
Vậy M<N
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
a=(10^7 -8 +13)/(10^7 - 8) = 1+ 13/(10^7 - 8)
b = (10^5 +6)/(10^5 -7) = (10^5-7+13)/(10^5 -7) = 1 + 13/(10^5-7)
vay b>a
a) \(\frac{{ - 3}}{8} = \frac{{ - 3.3}}{{8.3}} = \frac{{ - 9}}{{24}}\)
Vì -9 < -5 nên \(\frac{{ - 9}}{{24}} < \frac{{ - 5}}{{24}}\)
Vậy \(\frac{{ - 3}}{8} < \frac{{ - 5}}{{24}}\).
b) Cách 1: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5}; \frac{3}{{ - 5}} = \frac{-3}{{5}}\)
Vì 2 > -3 nên \(\frac{2}{5} > \frac{-3}{{5}}\)
Vậy \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
Cách 2: \(\frac{{ - 2}}{{ - 5}} = \frac{2}{5} > 0\) mà \(\frac{3}{{ - 5}} < 0\)
\(\Rightarrow\) \(\frac{{ - 2}}{{ - 5}} > \frac{3}{{ - 5}}\).
c) \(\frac{{ - 3}}{{ - 10}} = \frac{3}{{10}} = \frac{{3.2}}{{10.2}} = \frac{6}{{20}}\)
\(\frac{{ - 7}}{{ - 20}} = \frac{7}{{20}}\)
Vì 6 < 7 nên \(\frac{6}{{20}} < \frac{7}{{20}}\) nên \(\frac{{ - 3}}{{ - 10}} < \frac{{ - 7}}{{ - 20}}\).
d) \(\frac{{ - 5}}{4} = \frac{{ - 5.5}}{{4.5}} = \frac{{ - 25}}{{20}}; \frac{{ 23}}{{-20}}=\frac{{-23}}{{20}} \)
Vì -25 < -23 nên \( \frac{{ - 25}}{{20}} < \frac{{-23}}{{20}} \)
Vậy \(\frac{{ - 5}}{4} < \frac{{23}}{{ - 20}}\).