\(\dfrac{31}{58}va\dfrac{57}{59}\)

b. \(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

b, Ta có: \(\dfrac{58}{53}>1>\dfrac{36}{55}\)

hay \(\dfrac{58}{53}>\dfrac{36}{55}\)

\(\Rightarrow0-\dfrac{58}{53}< 0-\dfrac{36}{55}\)

\(\Rightarrow\dfrac{-58}{53}< \dfrac{-36}{55}\)

14 tháng 8 2018

\(\frac{57}{59}\) > \(\frac{31}{38}\)

14 tháng 8 2018

giải thích vì sao đi bn

=>360+57<10x<58x4+59x5

=>417<10x<527

\(\Leftrightarrow10x\in\left\{420;430;440;...;510;520\right\}\)

hay \(x\in\left\{42;43;44;...;51;52\right\}\)

11 tháng 7 2017

các bạn giúp mk vs

mk đg cần gấp khocroi

16 tháng 3 2017

Mẫu số chung : \(LCM\left(60;120;36;90;72\right)=360\)

Quy đồng mẫu số :

\(\dfrac{360}{360}+\dfrac{-6}{360}+\dfrac{57}{360}< \dfrac{10\cdot x}{360}< \dfrac{232}{360}+\dfrac{295}{360}+\dfrac{-6}{360}\)

\(\Leftrightarrow\dfrac{411}{360}< \dfrac{10\cdot x}{360}< \dfrac{521}{360}\)

Vậy tập hợp các giá trị của x là \(x=\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)

16 tháng 3 2017

Cảm ơn!

AH
Akai Haruma
Giáo viên
5 tháng 5 2018

Lời giải:

\(A=\frac{1}{2}+\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}\)

Ta có:

\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{3}{30}=\frac{1}{10}\)

\(\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}=\frac{5}{50}=\frac{1}{10}\)

Cộng theo vế:

\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{2}{10}=\frac{1}{5}\)

Suy ra \(A< \frac{1}{2}+\frac{1}{5}=\frac{7}{10}\)

Ta có đpcm.

5 tháng 3 2017

choáng

10 tháng 9 2017

dài quá mik ko làm âu

31 tháng 1 2018

Ta thấy \(7^{58}>7^{57}\Rightarrow7^{58}+2>7^{57}+2\Rightarrow E=\dfrac{7^{58}+2}{7^{57}+2}>1\)

\(7^{57}< 7^{58}\Rightarrow7^{57}+200< 7^{58}+200\Rightarrow F=\dfrac{7^{57}+200}{7^{58}+200}< 1\)

Vậy E > F

31 tháng 1 2018

\(VT>1\) \(VP< 1\Leftrightarrow VT>VP\)