Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
\(B=\dfrac{1}{\sqrt{6}+\sqrt{5}}\)
mà 3<6; 2<5
nên A>B
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
\(B=\dfrac{1}{\sqrt{6}+\sqrt{5}}\)
mà 3<6; 2<5
nên A>B
b: A=134,6327
B=134,6328
Do đó: A<B
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)
\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)
\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)
\(=2017\cdot2016-2\)
\(\Rightarrow2015\cdot2018< 2016\cdot2017\)
\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)
có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\to\frac{1}{\sqrt{2016}+\sqrt{2015}}<\frac{1}{\sqrt{2015}+\sqrt{2014}}\). Nhân liên hợp từng phân thức, ta có
\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}<\frac{\sqrt{2015}-\sqrt{2014}}{\left(\sqrt{2015}+\sqrt{2014}\right)\left(\sqrt{2015}-\sqrt{2014}\right)}\)
\(\Leftrightarrow\sqrt{2016}-\sqrt{2015}<\sqrt{2015}-\sqrt{2014}\Leftrightarrow\sqrt{2016}+\sqrt{2014}<2\sqrt{2015}.\)
b. Tiếp tục thực hiện các biến đổi liên hợp, ta có
\(\sqrt{2008}-\sqrt{2005}+\sqrt{2009}-\sqrt{2007}=\frac{3}{\sqrt{2008}+\sqrt{2005}}+\frac{2}{\sqrt{2009}+\sqrt{2007}}\)
\(>\frac{3}{\sqrt{2015}+\sqrt{2010}}+\frac{2}{\sqrt{2015}+\sqrt{2010}}=\frac{5}{\sqrt{2015}+\sqrt{2010}}=\sqrt{2015}-\sqrt{2010}\)
Suy ra \(\sqrt{2008}-\sqrt{2005}+\sqrt{2009}-\sqrt{2007}>\sqrt{2015}-\sqrt{2010}\to\)
\(\to\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}.\) (ĐPCM).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{2017}-2\sqrt{2016}=\sqrt{2017}-\sqrt{8064}< 0< \sqrt{2016}\)
b) \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=8=\sqrt{64}>\sqrt{61}\)
c) \(\left(\sqrt{2016}+\sqrt{2014}\right)^2=4030+\sqrt{2014.2016}\)
\(\left(2\sqrt{2015}^2\right)=4030+\sqrt{2015.2015}\)
C/m được: \(\sqrt{2014.2016}< \sqrt{2015.2015}\)
\(\Rightarrow\left(\sqrt{2016}+\sqrt{2014}\right)^2< \left(2\sqrt{2015}\right)^2\)
\(\Rightarrow\sqrt{2014}+\sqrt{2016}< 2\sqrt{2015}\)
d) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=7=8-1=\sqrt{64}-1< \sqrt{65}-1\)
a) A = \(\sqrt{3}-\sqrt{2}\) và B = \(\sqrt{6}-\sqrt{5}\)
Giả sử : \(\sqrt{3}-\sqrt{2}\le\sqrt{6}-\sqrt{5}\)
⇔ \(\left(\sqrt{3}-\sqrt{2}\right)^2\le\left(\sqrt{6}-\sqrt{5}\right)^2\)
⇔ 5 - \(2\sqrt{6}\) ≤ 11 - \(2\sqrt{30}\)
⇔ \(2\sqrt{30}-2\sqrt{6}\) ≤ 6
⇔\(\left(2\sqrt{30}-2\sqrt{6}\right)^2\le6^2\)
⇔ 36, 66 ≤ 36 (sai)
Vậy \(\sqrt{3}-\sqrt{2}>\sqrt{6}-\sqrt{5}\)
a) ta có : \(8+2\sqrt{15}>8+2\sqrt{12}\Leftrightarrow\left(\sqrt{3}+\sqrt{5}\right)^2>\left(\sqrt{6}+\sqrt{2}\right)^2\)
\(\Leftrightarrow\sqrt{3}+\sqrt{5}>\sqrt{6}+\sqrt{2}\Leftrightarrow\sqrt{3}-\sqrt{2}>\sqrt{6}-\sqrt{5}\)
câu b tương tự nha