Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ko nên trả lời quá nhiều cùng 1 câu hỏi mà kết quả trả lời giống nhau.
a, M=2011.2013=2011.(2012+1)=2011.2012+2011
N=2012^2=2012.(2011+1)=2012.2011+2012
=>M<N
b, M=2015^2015+2015^2016=2015^2015.(1+2015)=2015^2015.2016
N=2016^2016=2016^2015.2016
=>M<N
k cho k nha
so sánh: \(A=\frac{2014}{2015}+\frac{2015}{2016}\) và \(B=\frac{2014+2015}{2015+2016}\)
\(\Rightarrow B=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
Ta có: \(\frac{2014}{2015}>\frac{2014}{2015+2016}\) vì \(2015<2015+2016\)
\(\frac{2015}{2016}>\frac{2015}{2015+2016}\) vì \(2016<2015+2016\)
\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014+2015}{2015+2016}\)
Vậy: \(A>B\)
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
B,
(1 - x-1/2011)+(1 - x-2/2012)+(1 - x-3/2013)=(1 - x-4/2014)+(1 - x-5/2015)+(1 - x-6/2016)
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 = 2010-x/2014 + 2010-x/2015 + 2010-x/2016
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 - 2010-x/2014 - 2010-x/2015 - 2010-x/2016=0
=>(2010-x).(1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016)=0
Mà: 1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016 khác 0
=> 2010-x=0
=>x=2010
a, 10/a^m > 11/a^m; 10/a^n > 9/a^n => A > B
b, bạn cộng 1 vào các phân số đưa VP qua VT đặt nhân tử chung x + 2010 thì trong ngoặc còn lại là số dương nên x + 2010 = 0
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B