Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài dễ mà you ko tự suy nghĩ được, đúng là lười suy nghĩ
a) 2561=(52)61=52.61=5122
Vì 122>120 nên 5122>5120 hay 2561>5120
b) 1680 = (42)80= 42.80=4160
Vì 160>65 nên 4160>465 hay 1680>465
Mấy câu khác tự làm
\(4^{21}=4^{3\times7}=\left(4^3\right)^7=64^7\)(*)
Từ (*) \(\rightarrow\) \(4^{21}=64^7\)
a) Ta có : 4<5
=> 453<553
=> (22)53<553
=> 2106<553
Mà 291<2106 nên 291<553
Vậy 291<553.
b) Ta có : 544=544
2112=(213)4=92614
Mà 53<9261 nên 544<92614
=> 544<2112
Vậy 544<2112.
1) \(5^{199}< 5^{200}=25^{100}\)
\(3^{300}=27^{100}>25^{100}\)
\(\Rightarrow3^{300}>5^{199}\)
\(\Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)
2) a) \(107^{50}=\left(107^2\right)^{25}=11449^{25}\)
\(73^{75}=\left(73^3\right)^{25}=389017^{25}>11449^{25}\)
\(\Rightarrow107^{50}< 73^{75}\)
b) \(54^4< 5^{12}< 21^{12}\Rightarrow54^4< 21^{12}\)
3^2n = (3^2)^n = 9^n
2^3n = (2^3)^n = 8^n
Vì 9^n > 8^n => 3^2n > 2^3n
7.2^13 < 8.2^13 = 2^3.2^13 = 2^3+13 = 2^16
=> 7.2^13 < 2^16
Tk mk nha
bạn Nguyễn Anh Quân bạn nên xen lại câu 7.213 và 216 đi bạn
54^4 và 21^12
21^12= (21^3)^4 = 9261^4
Vậy ta được 54^4 và 9261^4
Vì 54^4 < 9261^4 nên 54^4 < 21^12
\(54^4=\left(2.27\right)^4=\left(2.3^3\right)^4=2^4.3^{12}\)
\(21^{12}=\left(3.7\right)^{12}=3^{12}.7^{12}\)
Vì \(2^4
Ta co :\(54^4\&21^{12}\)
\(\Rightarrow21^{12}=\left(21^3\right)^4=9261^4\)
Ta thay :\(54^4
\(54^4\) = \(\left(2.27\right)^4\) = \(\left(2.3^3\right)^4\) = \(2^4.3^{12}\)
\(21^{12}\) = \(\left(7.3\right)^{12}\) = \(7^{12}.3^{12}\)
có \(7^{12}\) > \(2^{12}\) >\(2^4\) \(\Rightarrow21^{12}\) > \(54^4\)
a) 544 giữ nguyên
2112 = ( 213 )4 = 92614
vì 54 < 9261 nên 544 < 2112
Ý a làm như bạn Huy Hoàng indonaca là đúng.
b) Ta có:
\(1+2+...+100=5050=5^2.202\)
\(5^8=5^2.15625\)
Vì \(202< 15625\) => \(1+2+...+100< 5^8\)
21^12=(21^3)^4= 9261^4
64^4 < 9261^4
Vậy 64^4 < 21^12
\(64^4\) và \(21^{12}\)
\(21^{12}=\left(21^3\right)^4=9261^4\)
\(64^4< 9261^4\)
--> \(64^4< 21^{12}\)