Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 1,(375) = 1,375375375…
\(1\frac{3}{8}\) = 1,375
Vì 1,375375... > 1,375 nên 1,(375) > \(1\frac{3}{8}\)
b) Ta có: -1,(27) = -1,272727…
Vì 1,272727… > 1,272 nên - 1,272727 < -1,272 hay – 1,(27) < -1,272
5250=(52)125=25125
3375=(33)125=27125
27125>25125=>5250<3375
vậy 5250<3375
\(3^{250}\) và \(2^{375}\)
Ta có : \(3^{250}=\left(3^2\right)^{125}=9^{125}\)
\(2^{375}=\left(2^3\right)^{125}=8^{125}\)
Vì \(9^{125}>8^{125}\) nên \(3^{250}>2^{375}\)
\(\Rightarrow3^{250}>2^{375}\)
\(3^{250}=\left(3^2\right)^{125}=9^{125};2^{375}=\left(2^3\right)^{125}=8^{125}\)
Vì\(9^{125}>8^{125}\Rightarrow3^{250}>2^{375}\)
\(2^{100}=2^{4.25}=16^{25}\)
\(3^{75}=3^{3.25}=27^{25}\)
\(5^{50}=5^{2.25}=25^{25}\)
vì \(16^{25}< 25^{25}< 27^{25}\)
⇒ \(2^{100}< 5^{50}< 3^{75}\)
a: ΔHBA vuông tại B
=>HB<HA
Vì AB<BC
nên HA<HC
=>HB<HA<HC
b: HA<HC
=>góc HCA<góc HAC
c: HA<HC
=>góc HCA<góc HAC
=>góc AHB>góc BHC
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
a: Xet ΔHAC có AB<BC
mà AB,BC lần lượt là hình chiếu của HA,HC trên AC
nên HA<HC
mà HB<HA
nên HB<HA<HC
b: HA<HC
=>góc HCA<góc HAC
c: góc HCA<góc HAC
=>90 độ-góc HCA>90 độ-góc HAC
=>góc BHC>góc BHA
a/ ta co \(50^{20}=\left(50^2\right)^{10}\)
\(\left(50^2\right)^{10}=2500^{10}< 2550^{10}\)
Hay \(50^{20}< 2550^{10}\)
b/ ta có \(3^{75}=\left(3^3\right)^{25}\)
\(5^{50}=\left(5^2\right)^{25}\)
\(\Rightarrow\left(3^3\right)^{25}=27^{25}\)
\(\Rightarrow\left(5^2\right)^{25}=25^{25}\)
Vay \(3^{75}>5^{50}\)