Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)
\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
mà \(-2\sqrt{105}>-2\sqrt{120}\)
nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)
\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)
mà \(4< 6\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)
\(a,\sqrt{3}và1,7\left(3\right)=1,73205...và1,7\left(3\right)\\ \Rightarrow1,73205>1,7\left(3\right)\\ \Rightarrow\sqrt{3}>1,7\left(3\right).\\ b,-2,236và-\sqrt{5}=-2,236và-2,23606...\\ \Rightarrow-2,236>-2,23606\\ \Rightarrow-2,236>-\sqrt{5} \)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
\(A=\left(\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{5}+\sqrt{6}+\sqrt{7}+\sqrt{8}+\sqrt{9}\right)+\left(\sqrt{10}+\sqrt{11}+\sqrt{12}\right)\)
Ta có:
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}>1+\sqrt{1}+\sqrt{1}+\sqrt{1}+2=5\)
\(\sqrt{5}+\sqrt{6}+\sqrt{7}+\sqrt{8}+\sqrt{9}>\sqrt{5}+\sqrt{5}+\sqrt{5}+\sqrt{5}+\sqrt{5}=5\sqrt{5}\)
\(\sqrt{10}+\sqrt{11}+\sqrt{12}>\sqrt{9}+\sqrt{9}+\sqrt{9}=9\)
=> \(A>5+5\sqrt{5}+9=14+5\sqrt{5}>12+5\sqrt{5}\)
Vậy...
a) Vì a - 5 ≥ b - 5 => a - 5 + 5 ≥ b - 5 + 5
=> a ≥ b
b) Vì 15 + a ≤ 15 + b => 15 + a -15 ≤ 15 + b -15
=> a ≤ b