Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7.2^{13}< 8.2^{13}=2^3.2^{13}=2^{16}\)
b) \(3^{2n}=\left(3^2\right)^n=9^n>8^n=\left(2^3\right)^n=2^{3n}\)
c) \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\) (1)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\) (2)
(1) và (2) suy ra \(21^{15}< 27^3.49^8\)
d) \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=234^{100}\) (3)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\) (4)
Từ (3) và (4) suy ra \(3^{500}< 7^{300}\)
e) \(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{100}\) (5)
\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{100}< 3.9^{100}\) (6)
Từ (5) và (6) suy ra \(3^{21}>2^{31}\)
g) \(202^{303}=\left(2.101\right)^{3.101}=\left(2^3\right)^{101}.101^{3.101}=8^{101}.101^{3.101}=8^{101}.101^{101}.101^{2.101}=808^{101}.101^{2.101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2\right)^{101}.101^{2.101}=9^{101}.101^{2.101}\)
Suy ra \(202^{303}>303^{202}\)
a/ \(8^5=\left(2^3\right)^5=2^{15}\)và \(32^3=\left(2^5\right)^3=2^{15}\Rightarrow8^5=32^3\)
b/ \(27^4=\left(3^3\right)^4=3^{12}\) và \(9^6=\left(3^2\right)^6=3^{12}\Rightarrow27^4=9^6\)
c/ \(23^{17}-23^{16}=23^{16}\left(23-1\right)=22.23^{16}\)
\(23^{16}-23^{15}=23^{15}\left(23-1\right)=22.23^{15}\)
\(\Rightarrow22.23^{16}>22.23^{15}\Rightarrow23^{17}-23^{16}>23^{16}-23^{15}\)
d/ \(\frac{3^{2015}+1}{3^{2016}}=\frac{1}{3}+\frac{1}{3^{2016}}\) và \(\frac{3^{2016}+1}{3^{2017}+1}=\frac{3^{2017}+3}{3\left(3^{2017}+1\right)}=\frac{3^{2017}+1+2}{3\left(3^{2017}+1\right)}=\frac{1}{3}+\frac{2}{3}.\frac{1}{3^{2017}+1}\)
\(\frac{1}{3^{2016}}>\frac{1}{3^{2017}}>\frac{1}{3^{2017}+1}>\frac{2}{3}.\frac{1}{3^{2017}+1}\)
\(\Rightarrow\frac{3^{2015}+1}{3^{2016}}>\frac{3^{2016}+1}{3^{2017}+1}\)
Câu cuối phân tích tương tự
a, 210 = 22.5 = 322 > 102
b, 2300 = 2100.3 = 6100
3200 = 32.100 = 9100
6100 < 9100
nên : 3200 > 2300
So sánh :
b) 2^300 và 3^200
Ta có :
2^300 = ( 2^3 )^100 = 8^100
3^200 = ( 3^2 )^100 = 9^100
Vì 8^100 < 9^100 => 2^300 < 3^200
Vậy 2^300 < 3^200
\(3^{200}>2^{300}\) \(27^5< 243^3\)
\(9^{70}>8^{100}\) \(31^{11}>17^{14}\)
nhớ phải kết bn hoặc đấy
a) Ta có: 3^200=3^2.100=9^100
2^300=2^3.100=8^100
Vì 9^100>8^100 nên 3^200>2^300
a) Ta có : ( 4 + 5 )2 = 42 + 2 . 4 . 5 + 52 > 42 + 52
b) Ta có : 230 = ( 23 )10 = 810 ; 320 = ( 32 )10 = 910
vì 8 < 9 nên 230 < 320
a) ta cs: 3645 - 3644 = 3644.(36-1) =3644.35
3644 - 3643 = 3643.35
=> 3645 - 3644 > 3644 - 3643
b) ta cs: 3450 = (33)150 = 27150
5300 = (52)150 = 25150
=> 3450 > 5300
c) ta cs: 3452 = 345.345 = 345.(342+ 3) = 345.342 + 345.3
342 . 348 = 342.(345+3) = 342.345 + 342.3
=> 3452 > 342.348
d) ta cs: (1+2+3+4)2 = 102 =100
13 + 23 + 33 + 43 = 100
=>...
a. \(9^{16}=3^{32}\)
\(27^{11}=3^{33}\)
=> 3^32<3^33
=> 9^16<27^11
a. 916 và 2711
\(9^{16}=\left(3^2\right)^{16}=3^{32}\)
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
vì \(3^{32}< 3^{33}\Rightarrow9^{16}< 27^{11}\)
a) Ta có: 3400 = (34)100 = 81100
4300 = (43)100 = 64100
Vì 81100 > 64100
=> 3400 > 4300
b;c Tương tự