K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

Bài 2: 

a: \(\Leftrightarrow x=\dfrac{29}{60}\cdot\dfrac{-7}{5}=\dfrac{-203}{300}\)

b: \(\Leftrightarrow x\cdot\dfrac{2}{5}=\dfrac{29}{60}-\dfrac{3}{4}=\dfrac{29-45}{60}=\dfrac{-16}{60}=\dfrac{-8}{30}\)

\(\Leftrightarrow x=\dfrac{-8}{30}:\dfrac{2}{5}=\dfrac{-8\cdot5}{30\cdot2}=\dfrac{-40}{60}=-\dfrac{2}{3}\)

12 tháng 7 2016

Bài 1: a) (2x+1)​2 =​ 25

               (2x+1)​2 = 5​2

=> 2x + 1 = 5           hoặc      2x+1 = -5

=> x=2                   hoặc       x=-3

  b) 2x+2 - 2​x = 96

<=> 2​x . 2​2 - 2​x = 96

<=> 2​x(4-1) =96

<=>2​x = 96 :3 = 32 = 2​5 

<=> x = 5

c) (x-1)​3 = 125

<=> (x-1)​3 = 5​3

<=> x-1=5

<=>x= 5 +1 = 6

 
12 tháng 7 2016

Bài 2 :

a) Ta có :  7​6+7​5-7​4 
              =7​4(7​2+7-1) 
              =7​4.55=7​4.5.11 chia hết cho 11 

b) Ta có:

81​7-27​9-913
=(3​4)​7- (3​3)​9-​   (3​2)​13 
=328 - 327- 3​26
=326 (3​2-3-1) 
 = 326.5 = 31​3.3​2.5 = 45.31​3 chia hết cho 45

24 tháng 6 2021

`a)2^{300}=(2^3)^100=8^100`

`3^200=(3^2)^100=9^100`

Vì `9^100>8^100`

`=>2^300<3^200`

`b)3xx24^10`

`=3.(3.8)^10`

`=3^{11}.8^10`

`=3^{11}.2^30`

`2^300=2^{30}.2^{270}`

`=2^{30}.8^{90}`

Vì `3^11<8^90`

`=>3^{11}.2^30<8^{90}.2^30=2^300`

`=>3xx24^{10}<2^300+3^20+4^30`

14 tháng 8 2016

\(3.24^{100}=3.3^{100}.8^{100}=3^{101}.\left(2^3\right)^{100}=3^{101}.2^{3.100}=3^{101}.2^{300}\)
\(4^{300}=2^{300}.2^{300}=2^{2.150}.2^{300}=\left(2^2\right)^{150}.2^{300}=4^{150}.2^{300}\)
\(3^{101}.2^{300}< 4^{150}.2^{300}\)nên \(3.24^{100}< 4^{300}\Rightarrow3.24^{100}< 3^{300}+4^{300}\)

21 tháng 8 2021

KHÙNG

21 tháng 10 2021

\(2^{300}+3^{300}+4^{300}-729.24^{100}=\)

\(=2^{300}+3^{300}+\left(2^2\right)^{300}-3^6.\left(2^3.3\right)^{100}=\)

\(=2^{300}+3^{300}+2^{600}-2^{300}.3^{106}=\)

\(=2^{300}\left(1+2^{300}-3^{106}\right)+3^{300}\)

Ta có

\(2^{300}=\left(2^2\right)^{150}=4^{150}>3^{150}>3^{106}\Rightarrow2^{300}-3^{106}>0\)

\(\Rightarrow2^{300}\left(1+2^{300}-3^{106}\right)+3^{300}>0\)

\(\Rightarrow2^{300}+3^{300}+4^{300}>729.24^{100}\)

19 tháng 10 2016

Ta có

\(2^{300}+3^{300}+4^{400}=2^{300}+3^{300}+2^{800}.\)

\(729.24^{100}=3^{106}.2^{300}=2^{300}+3^{105}.2^{300}\)

Ta lại có

\(3^{105}+3^{105}+3^{105}+3^{105}.2^{297}=3^{315}+3^{105}.2^{297}\)

Nên chỉ cần so sánh \(3^{105}.2^{297}\)với \(2^{800}\)là đc , dùng logarist cơ số 2 là xong 

19 tháng 10 2016

Đề bài của mình là 4^300 cơ mà