\(\frac{2^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

không

19 tháng 12 2017

em không thể trả lời được

cho em nhé 

kết bạn với em nhé

30 tháng 7 2017

\(25^{50}>2^{300}\)

30 tháng 7 2017

Bạn có thể giải chi tiết giúp mình được ko

'

17 tháng 12 2016

SAI ĐỀ

 

27 tháng 5 2018

a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)

\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)

Từ (1) và (2) \(\Rightarrow A< B\)

Vậy \(A< B.\)

b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)

\(A=\left(0,1\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)

\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

d) \(A=102^7=102^6.102\)(1)

\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)

\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)

Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)

Vậy \(A>B.\)

f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)

\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

27 tháng 5 2018

a, ta có A=2^24=64^4

             B=3^16=81^4

Vì 64^4<81^4

Vậy 2^24<3^36

b, ta có A=0,1^15

             B=0,3^30=0,09^15

Vì 0,1^15< 0,09^15

Vậy 0,1^15<0,3^30

25 tháng 11 2017

Ta có : 

\(\frac{-1}{2}^{300}=\left[\left(-\frac{1}{2}\right)^3\right]^{100}=\left(-\frac{1}{8}\right)^{100}\)

\(\frac{-1}{3}^{200}=\left[\left(-\frac{1}{3}\right)^2\right]^{100}=\frac{1}{9}^{100}\)

vì \(\left(-\frac{1}{8}\right)^{100}=\frac{1}{8}^{100}\)mà 8100 < 9100 nên \(\frac{1}{8}^{100}>\frac{1}{9}^{100}\)hay \(\left(-\frac{1}{8}\right)^{100}>\left(\frac{1}{9}\right)^{100}\)

Vậy \(\left(-\frac{1}{2}\right)^{300}>\left(-\frac{1}{3}\right)^{200}\)

25 tháng 11 2017

\(\left(\frac{-1}{2}\right)^{300}=\left[\left(\frac{-1}{2}\right)^3\right]^{100}=\left(\frac{-1}{8}\right)^{100}\)

\(\left(\frac{-1}{3}\right)^{200}=\left[\left(\frac{-1}{3}\right)^2\right]^{100}=\left(\frac{1}{9}\right)^{100}\)

vì \(\left(\frac{-1}{8}\right)^{100}< \left(\frac{1}{9}\right)^{100}\)nên \(\left(\frac{-1}{2}\right)^{300}< \left(\frac{-1}{3}\right)^{200}\)

6 tháng 7 2017

Ta có : 333^444=(3.111)^444=3^444.111^444

444^333=(4.111)^333=4^333.111^333

Ta lại có : 3^444=(3^4)^111=81^111

4^333=(4^3)^111=64^111

vì 3^444>4^333

mặt khác 111^333<111^444

suy ra 4^333.111^333<3^444.111^444    

                                  vậy 333^444>444^333

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0
28 tháng 5 2018

a) Ta có: \(\frac{x+2}{5}=\frac{1}{x-2}\Leftrightarrow\left(x+2\right).\left(x-2\right)=5\)

                                              \(\Rightarrow x^2-4=5\)

                                              \(\Rightarrow x^2=9\)

                                              \(\Rightarrow x=\left\{3;-3\right\}\)

b) \(\frac{x^2}{6}=\frac{24}{25}\Rightarrow x^2=\frac{6.24}{25}=\frac{144}{25}\)

                            \(\Rightarrow x=\left\{\frac{12}{5};\frac{-12}{5}\right\}\)

c) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x^2+y^2}{3^2+4^2}=\frac{100}{25}=4\)

\(\Rightarrow x^2=4.9=36\Rightarrow x=\left\{-6;6\right\}\)

      \(y^2=4.16=64\Rightarrow y=\left\{-8;8\right\}\)

28 tháng 5 2018

1 )           Ta có : 

\(\frac{x+2}{5}=\frac{1}{x-2}\)

\(\Rightarrow\left(x+2\right)\left(x-2\right)=1.5\)

\(\Rightarrow\left(x+2\right)x-\left(x+2\right).2=5\)

\(\Rightarrow x^2+2x-2x-4=5\)

\(\Rightarrow x^2-4=5\)

\(\Rightarrow x^2=5+4\)

\(\Rightarrow x^2=9\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy ...

2 )          

\(\frac{x^2}{6}=\frac{24}{25}\Rightarrow x^2=\frac{24}{25}.6=\frac{144}{25}\Rightarrow\orbr{\begin{cases}x=\frac{12}{5}\\x=-\frac{12}{5}\end{cases}}\)

Vậy ...

3 )        

Ta có : 

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)và      \(x^2+y^2=100\)

Áp dụng tính chất dãy tỉ số  bằng nhau , ta có : 

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...