Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{3^{122}}{3^{124}+1}=\frac{3^{123}}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+1}=A\)
Do đó \(A>B\).
a) Vì \(721< 834\Rightarrow\frac{5}{721}>\frac{5}{834}\)
b) Ta có \(\frac{4}{37}< \frac{5}{37}< \frac{5}{36}\Rightarrow\frac{4}{37}< \frac{5}{36}\)
c) Ta có \(\frac{1994}{1995}=1-\frac{1}{1995}\)
\(\frac{1999}{2000}=1-\frac{1}{2000}\)
Vì \(\frac{1}{1995}>\frac{1}{2000}\Rightarrow1-\frac{1}{1995}< 1-\frac{1}{2000}\Rightarrow\frac{1994}{1995}< \frac{1999}{2000}\)
d) Ta có :\(\frac{489}{487}=1+\frac{2}{487}\)
\(\frac{487}{485}=1+\frac{2}{485}\)
Vì \(\frac{2}{485}>\frac{2}{487}\Rightarrow1+\frac{2}{485}>1+\frac{2}{487}\Rightarrow\frac{489}{487}>\frac{487}{485}\)
e) Ta có : \(\frac{123.125+119}{124.125-177}=\frac{123.125+119}{\left(123+1\right).125-177}=\frac{123.125+119}{123.125+125-177}=\frac{123.125+119}{123.125-52}\)
\(=\frac{123.125-52+171}{123.125-52}=1+\frac{171}{123.125-52}>1\)
f) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}=1-\frac{1}{200}< 1\)
a) B = 124 x 122 = (123+1) x (123-1) = 123 x 123 -123 + 123 -1 = A -1
=> B < A
b) B = 986 x 985 = (987-1) x (984+1) = 987 x 984 + 987 - 984 -1 = A +2
=> B > A
Ta có: \(A=124\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)
\(=\frac{124}{1984}\left(\frac{1984}{1.1985}+\frac{1984}{2.1986}+\frac{1984}{3.1987}+...+\frac{1984}{16.2000}\right)\)
\(=\frac{1}{16}\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\right]\)
\(B=\frac{1}{1.17}+\frac{1}{2.19}+...+\frac{1}{1984.2000}\)
\(=\frac{1}{16}\left(\frac{16}{1.17}+\frac{16}{2.18}+...+\frac{16}{1984.2000}\right)\)
\(=\frac{1}{16}\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{1984}\right)\right]-\left[\frac{1}{17}+\frac{1}{18}+...+\frac{1}{2000}\right]\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)
Vậy A = B
A = \(\dfrac{3^{123}+1}{3^{125}+1}\) Vì 3123 + 1 < 2125 + 1 Nên A = \(\dfrac{3^{123}+1}{3^{125}+1}\)< \(\dfrac{3^{123}+1+2}{3^{125}+1+2}\)
A < \(\dfrac{3^{123}+3}{3^{125}+3}\) = \(\dfrac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\) = \(\dfrac{3^{122}+1}{3^{124}+1}\) = B
Vậy A < B