\(300^{200}\)và \(200^{300}\)

 

   ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

a) 300^200 = 300^(2.100)=90000^100

200^300= 200^(3.100) = 8000000^100

ma 90000<8000000

nên 300^200 <200^300

vay 300^200<200^300

   

28 tháng 4 2017

b)71^50=71^ (2.25)=5041^25

37^75=37^(3.25)=50653^25

vì 5041<50653

nen 5041^25<50653^25 

nen 71^50<37^75 

vay 71^50<37^75

26 tháng 3 2020

a) 3200=(32)100=9100 ; 2300=(23)100=8100

=> 9100>8100 hay 3200>2300

b) 7150=(712)25=504125 ; 3775=(373)25=5065325

=> 504125<5065325 hay 7150<3775

c)rút gọn

2016014/2017015=2014/2015

2016016014/2017017015=2014/2015

=> 2014/2015 = 2014/2015

14 tháng 7 2018

a,3^200 và 2^300

3^200=(3^2)^100=9^100

2^300=(2^3)^100=8^100

Vì 9^100>8^100=>3^200>2^300

Vậy 3^200>2^300

b, 71^50 và 37^75

71^50=(71^2)^25=5041^25

37^75=(37^3)^25=50653^25

Vì 5041^25<50653^25=> 71^50<37^75

Vậy  71^50<37^75

c, 201201/202202 và 201201201/202202202

201201201/202202202=201201/202202

=> 201201/202202=201201201/202202202

Vậy 201201/202202=201201201/202202202

14 tháng 7 2018

a)

Ta có:3200=32.100=(32)100=9100

2300=23.100=(23)100=8100

Vì 9100>8100

Nên 3200>2300

b) 

Ta có: 7150=712.25=(712)25=504125

3775=373.25=(373)25=5065325

Vì 504125<5065325

Nên 7150<3775

c)

Ta có:

201201/202202=201.1001/202.1001=201/202

201201201/202202202=201.1001001/202.1001001001= 201/202

Vì 201/202=201/202

Nên 201201/202202=201201201/202202202

10 tháng 3 2016

a. 3200 = (32)100 = 9100

2300 = (23)100 = 8100

Vì 9100 > 8100 => 3200 > 2300

22 tháng 8 2018

a, 210 = 22.5 = 322 > 102

b, 2300 = 2100.3 = 6100

3200 = 32.100 = 9100

6100 < 9100

nên : 3200 > 2300

22 tháng 8 2018

So sánh : 

b) 2^300 và 3^200 

Ta có : 

2^300 = ( 2^3 )^100 = 8^100 

3^200 = ( 3^2 )^100 = 9^100 

Vì 8^100  <  9^100 =>  2^300 < 3^200

Vậy 2^300  < 3^200 

25 tháng 9 2017

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

vi \(8^{100}< 9^{100}\)nen \(2^{300}< 3^{200}\)

25 tháng 9 2017

\(2^{300}>3^{200}\)

16 tháng 8 2016

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

\(8^{100}< 9^{100}=>2^{300}< 3^{200}\)

16 tháng 8 2016

UCLN (300 , 200 )=100

2^300 = 2^100 x 3 = (2^3)^100= 8^100

3^200=  3^100 x 2= (3^2) ^100= 9^100

vì 8^100 < 9^100

=>2^300 < 3^200

28 tháng 3 2018

2.  a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)

b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)

     \(37^{75}=\left(3^3\right)^{25}=27^{25}\)

Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)

c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)

      \(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)

Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)

27 tháng 4 2020

Gyvyghghgbhg

6 tháng 7 2016

a,\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

 \(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì 9100>8100 nên 3200>2300

b,\(3^{375}=3^{5.75}=\left(3^5\right)^{75}=243^{75}\)

\(5^{225}=5^{3.75}=\left(5^3\right)^{75}=125^{75}\)

Vì 24375>12575 nên 3375>5225

c,\(99^{20}=99^{2.10}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)

Vật 9920<999910

d,\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)

Vì 81927>31257 nên 291>535