Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)
b, Ta có : \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
\(\Rightarrow3^{2009}< 9^{1005}\)
c, Ta có : \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
a) Ta có: \(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì 9>8 nên 9111>8111
Vậy 3222>2333
b) Ta có: \(9^{1005}=\left(3^2\right)^{1005}=3^{2010}\)
Vì 2010>2009 nên 32010>32009
Vậy 91005>32009
c)Ta có:\(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Vì 99<101 nên (99.99)10<(99.101)10
Vậy 9920<999910
a) \(2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8< 9\)\(\Rightarrow8^{111}< 9^{111}\)\(\Rightarrow2^{333}< 3^{222}\)
b) \(9^{1005}=\left(3^2\right)^{1005}=3^{2.1005}=3^{2010}>3^{2009}\)
a) Ta có: 2300=(23)100=8100
3200=(32)100=9100
Vì 8<9 nên 8100<9100
Vậy 2300<3200
b) Ta có: 2333=(23)111=8111
3222=(32)111=9111
Vì 8<9 nên 8111<9111
Vậy 2333<3222
a) 2300 = 23 . 100 = ( 23 )100 = 8100
3200 = 32 . 100 = ( 32 )100 = 9100
Vì 8100 < 9100 nên 2300 < 3200
b) Tương tự
a. 2333 = (23)111= 8111
3222= (32)111= 9111
Thấy 8<9 nên 8111< 9111.
Vậy 2333 < 3222
b.\(\sqrt{8}\)+\(\sqrt{24}\)
8= 3+5= \(\sqrt{9}\)+\(\sqrt{25}\)
Thấy 9>8; 25>24 nên \(\sqrt{9}\)>\(\sqrt{8}\); \(\sqrt{25}\)>\(\sqrt{24}\)
Vậy \(\sqrt{8}\)+\(\sqrt{24}\)<8
c.Vì 4>3 và \(\sqrt{19}\)> \(\sqrt{15}\)nên 4+\(\sqrt{19}\)>\(\sqrt{15}\)+3
Vậy 4+\(\sqrt{19}\)> \(\sqrt{15}\)+3
a) ta có : 2300=23.100=(23)100=8100
3200=32.100=(32)100=9100
Vì 8100<9100=>2300<3200
Vậy......
Câu b làm tương tự
-Vì (1/222)^333=(1/222)^3.111=(3/666)^111
(1/333)^222=(1/333)^2.111=(2/666)^111
-Vì 111=111 và 3/666>2/666
=))(1/222)^333>(1/333)^222
a, \(2^{91}\) và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\) nên \(2^{91}>5^{35}\)
b, \(222^{333}\) và \(333^{222}\)
Ta có :
\(222^{333}=\left(2.111\right)^{333}=2^{333}.111^{333}=\left(2^3\right)^{111}.111^{333}=8^{111}.111^{333}\)
\(333^{222}=\left(3.111\right)^{222}=3^{222}.111^{222}=\left(3^2\right)^{111}.111^{222}=9^{111}.111^{222}\)
Vì \(8^{111}< 9^{111}\) nên \(222^{333}< 333^{222}\)