Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2333 = (23)111= 8111
3222= (32)111= 9111
Thấy 8<9 nên 8111< 9111.
Vậy 2333 < 3222
b.\(\sqrt{8}\)+\(\sqrt{24}\)
8= 3+5= \(\sqrt{9}\)+\(\sqrt{25}\)
Thấy 9>8; 25>24 nên \(\sqrt{9}\)>\(\sqrt{8}\); \(\sqrt{25}\)>\(\sqrt{24}\)
Vậy \(\sqrt{8}\)+\(\sqrt{24}\)<8
c.Vì 4>3 và \(\sqrt{19}\)> \(\sqrt{15}\)nên 4+\(\sqrt{19}\)>\(\sqrt{15}\)+3
Vậy 4+\(\sqrt{19}\)> \(\sqrt{15}\)+3
a) Ta có \(\sqrt{17}>\sqrt{16}=4\)
\(\sqrt{26}>\sqrt{25}=5\)
Khi đó \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)
Mà \(\sqrt{99}< \sqrt{100}=10\) (2)
Từ (1) và (2) suy ra \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Vậy....
\(\sqrt{33}>\sqrt{29}\)
\(\sqrt{14}<\sqrt{16}=4\)
Vậy \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
\(\text{Ta có : A}=222^{555}=(222^5)^{111}\)
\(\text{B}=555^{222}=(555^2)^{111}\)
\(\text{Vì }222^{555}-555^{222}>0\Rightarrow A>B\)
Chúc bạn học tốt :>
\(\text{Có j thắc mắc thì cứ hỏi mk}\)
ta có:
A=222555=(2225)111
B=555222=(5552)111
=>A>B vì 2225>5552
vậy A>B
\(a)\)
Cách 1 :
\(2^{30}+3^{30}+4^{30}\ge3\sqrt[3]{\left(2.3.4\right)^{30}}=3.\left(2.3.4\right)^{10}=3.24^{10}\) ( Cosi )
Mà \(2^{30}\ne3^{30}\ne4^{30}\) nên dấu "=" không xảy ra hay \(2^{30}+3^{30}+4^{30}>3.24^{10}\)
Vậy ...
Cách 2 :
\(4^{30}=4^{11}.4^{19}=4^{11}.2^{38}>3^{11}.2^{30}=3.3^{10}.8^{10}=3.24^{10}\)
Vậy ...
\(b)\)\(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{14}+\sqrt{29}\)
Vậy ...
Ta có :
1) 45^10 . 5^30= (5.9)^10 . 5^30 = 5^10 . 5^30 . 9^10 = 5^40 . 3^20 = 25^20 . 3^20=75^20
2)\(\sqrt{40+2}=\sqrt{42}<\sqrt{49}=7=6+1=\sqrt{36}+\sqrt{1}<\sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}<\sqrt{40}+\sqrt{2}\)
3)\(Cho\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k;y=4k\)
Ta lại có:
\(xy=12\Rightarrow3k.4k=12\)
\(12.k^2=12\Rightarrow k^2=1\Rightarrow k=1:-1\)
\(Vơik=1\Rightarrow x=1.3=3;y=1.4=4\)
\(k=-1\Rightarrow x=-1.3=-3;y=-1.4=-4\)
(3x - 7)2007 = (3x - 7)2005
=> (3x - 7)2007 - (3x - 7)2005 = 0
=> (3x - 7)2005 [(3x - 7)2 - 1] = 0
=> (3x - 7)2005 = 0 hoặc (3x - 7)2 - 1 = 0
+) (3x - 7)2005 = 0
=> 3x - 7 = 0
=> 3x = 7
=> x = 7/3
+) (3x - 7)2 - 1 = 0
=> (3x - 7)2 = 1
=> 3x - 7 = 1 => 3x = 8 => x = 8/3
3x - 7 = -1 => 3x = 6 => x = 2
Vậy: x \(\in\){-7/3;8/3;2