K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

a)

Ta có :

\(1024^9=\left(2^{10}\right)^9=2^{90}< 2^{100}\)

\(\Rightarrow1024^9< 2^{100}\)

b)

\(\begin{cases}9^{12}=\left(3^2\right)^{12}=3^{24}\\27^7=\left(3^3\right)^7=3^{21}\end{cases}\)

\(3^{24}>3^{21}\)

=> \(9^{12}>27^7\)

c)

\(\begin{cases}125^{80}=\left(5^3\right)^{80}=5^{240}\\25^{118}=\left(5^2\right)^{118}=5^{236}\end{cases}\)

=> 12550>25118

9 tháng 9 2021

\(27^{13}=\left(3^3\right)^{13}=3^{39};243^8=\left(3^5\right)^8=3^{40};3^{39}< 3^{40}\Rightarrow27^{13}< 243^8\\ 125^{80}=\left(5^3\right)^{80}=5^{240};25^{118}=\left(5^2\right)^{118}=5^{236};5^{240}>5^{236}\Rightarrow125^{80}>25^{118}\)

9 tháng 9 2021

\(27^{13}< 243^8;125^{80}>25^{118}\)

a. \(5^{127}=5.5^{126}=5.125^{72}>119^{72}\)

\(\Rightarrow5^{217}>119^{72}\)

b. \(2^{1000}=\left(2^5\right)^{200}=32^{200}\)

\(5^{400}=\left(5^2\right)^{200}=25^{200}\)

\(\Rightarrow2^{1000}>5^{400}\)

c. \(9^{12}=\left(3^2\right)^{12}=3^{24}\)

\(27^7=\left(3^3\right)^7=3^{21}\)

\(\Rightarrow9^{12}>27^7\)

d. \(125^{80}=\left(5^3\right)^{80}=5^{240}\)

\(25^{118}=\left(5^2\right)^{118}=5^{236}\)

\(\Rightarrow125^{80}>25^{118}\)

e. \(5^{40}=\left(5^4\right)^{10}=625^{10}\)

\(\Rightarrow5^{40}>620^{10}\)

f. \(27^{11}=\left(3^3\right)^{11}=3^{33}\)

\(81^8=\left(3^4\right)^8=3^{32}\)

\(\Rightarrow27^{11}>81^8\)

19 tháng 5 2019

a)  1024 9 = ( 2 10 ) 9 = 2 90 < 2 100

b)  6 . 5 29 > 5 . 5 29 = 5 30

c) 10 30 = ( 10 3 ) 10 = 1000 10 ; 2 100 = ( 2 10 ) 10 = 1024 10   n ê n   10 30 < 2 100 .

27 tháng 11 2018

a) >

b) <

c) <

d) <

13 tháng 12 2021

a)>

b)<

c)<

d)<

14 tháng 7 2017

a) Cách 1:  2 100 = 2 10 10 = 1024 10 > 1024 9

Cách 2:  1024 9 = 2 10 9 2 90  <  2 100

b)  6 . 5 29  >  5 . 5 29  =  5 30

c)  2 98 =  2 2 49 4 49  <  9 49

d)  10 30 10 3 10 = 1000 10 2 100 =  2 10 10  = 1024 10 nên  10 30  <  2 100

10 tháng 10 2021

\(A=8^{200}=\left(2^3\right)^{200}=2^{600}=2^{100}\cdot2^{500}\\ B=2^{100}\cdot9^{150}=2^{100}\cdot\left(3^2\right)^{150}=2^{100}\cdot3^{300}\\ 2^{500}=32^{100};3^{300}=27^{100}\\ 32^{100}>27^{100}\Rightarrow2^{500}>3^{300}\\ \Rightarrow A>B\)

`@` `\text {Ans}`

`\downarrow`

`2^100` và `3^50`

Ta có:

\(2^{100}=\left(2^4\right)^{25}=16^{25}\)

\(3^{50}=\left(3^2\right)^{25}=9^{25}\)

Vì `16 > 9 =>`\(16^{25}>9^{25}\Rightarrow2^{100}>3^{50}\)

Vậy, `2^100 > 3^50` `.`

18 tháng 7 2023

Sao không so sánh \(4^{50}\)  với \(3^{50}\) cho nhanh nhỉ

Ta có: 2100=231.269

  = 231 . 263 . 26

                 = 231 . ( 29 )7 . ( 22)3

                  = 231 . 5127 . 4

Lại có : 1031 = 231 . 531

                          = 231 . 528 . 53

                                 = 231 . ( 547 . 53

                        = 231 . 6257 . 5

=>231 . 625. 53 > 231 . 3127 . 53 > 231 . 3127 . 43

<=> 2100<1031

2 tháng 8 2023

2100 < 1031

 

15 tháng 10 2023

Ta có:

\(2^{200}.2^{100}=\left(2^2\right)^{100}.2^{100}=4^{100}.2^{100}=\left(4.2\right)^{100}=8^{100}\)

\(3^{100}.3^{100}=\left(3.3\right)^{100}=9^{100}\)

Vì \(8< 9\) nên \(8^{100}< 9^{100}\)

Vậy \(2^{200}.2^{100}< 3^{100}.3^{100}\)

\(#WendyDang\)

15 tháng 10 2023

\(2^{200}\cdot2^{100}=2^{300}=(2^3)^{100}=8^{100}\\3^{100}\cdot3^{100}=(3\cdot3)^{100}=9^{100}\)

Vì \(8< 9\) nên \(8^{100}< 9^{100}\)

hay \(2^{200}\cdot2^{100}< 3^{100}\cdot3^{100}\)