Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\frac{2018+2019}{2019+2020}\)
\(\Rightarrow B=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)
\(\Rightarrow B< \frac{2018}{2019}+\frac{2019}{2020}=A\)
Vậy B < A
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow B< \frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}=A\)
Vậy B < A

Ta có :
\(\frac{1}{2009}A=\frac{2009^{2017}+1}{2009^{2017}+2009}=\frac{2009^{2017}+2009}{2009^{2017}+2009}-\frac{2008}{2009^{2017}+2009}=1-\frac{2008}{2009^{2017}+2009}< 1\)
\(\frac{1}{2009}B=\frac{2009^{2018}-2}{2009^{2018}-4018}=\frac{2009^{2018}-4018}{2009^{2018}-4018}+\frac{4016}{2009^{2018}-4018}=1+\frac{4016}{2009^{2018}-4018}>1\)
\(\Rightarrow\)\(A< 1< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~

(2/2017 + 2/2018) / (5/2017 + 5/2018)
= 2 x (1/2017 + 1/2018) / 5 x (1/2017 + 1/2018)
= 2/5 (vì (1/2017 + 1/2018) khác 0)
\(\frac{\frac{2}{2017}+\frac{2}{2018}}{\frac{5}{2017}+\frac{5}{2018}}\)
\(=\frac{2\left(\frac{1}{2017}+\frac{1}{2018}\right)}{5\left(\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{2}{5}\)
Study well ! >_<

c=1+2-3-4+5+6-7-.......+2014-2015-2016+2017+2018
c=-4+-4+.....+-4+-4+2018
C=(-4).1009+2018\
C=-4036+2018
c=-2018

Bài 1:
ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{100^2}\)
\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
Bài 2:
ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Học tốt nhé bn !!

Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
A = 2A - A = ( 2 + 22 + 23 + 24 + ... + 22018 ) - ( 1 + 2 + ... + 22017 )
= 22018 - 1
Vì 22018 - 1 < 22018 nên A < B.
đừng có giục t
2a=2+2^2+...+2^2018
a=2a-a=(2+2^2+...+2^2018)-(2^0+2+2^2+..+2^2017)
=2^2018-1<b=2^2018