2011/1.2 +2011/3.4 +...+2011/1999.2000 ; B = 2012/1001 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Ta có:

A=-2012/4025=>-2012/4025x2=-4024/4025

B=-1999/3997=>-1999/3997x2=-3998/3997

Ta có: 4024/4025<1<3998/3997

=>4024/4025<3998/3997

=>-4024/4025>-3998/3997

=>-2012/4025>-1999/3997

5 tháng 1 2020

Có ai biết làm câu b) ko vậy, mình ko biết làm, giúp mình với!!

14 tháng 4 2017

@Ace Legona

19 tháng 7 2018

clmm gửi gì v

23 tháng 3 2018

1/ (69.210+1210)+(219.273+15.49.94)  = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39

218.39(2+3.22+5)=19.218.39

19 tháng 7 2018

sao bạn lại nhắn vớ va vớ vậy PHẠM ĐỨC PHÚC

6 tháng 1 2017

Mk cx chiu

26 tháng 2 2020

Theo bài ra ta có :

\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{4.5}+...+\frac{2011}{1999.2000}\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{1999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2000}\right)\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) \(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) 

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1000}\right)\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)

\(\Rightarrow A=2011\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\left(1\right)\)

Ta lại có :

\(B=\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)

\(\Rightarrow B=2012\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\)\(\left(2\right)\)

Từ (1) và (2) => A < B

Vậy A < B

4 tháng 1 2022

lộn dấu xíu kìa

nhìn chung đúng rồi bạn ơi

 

23 tháng 1 2016

6567 đồng

tick nha

18 tháng 3 2017

xin lỗi nhưng bài này mik cũng ko bt giải

18 tháng 3 2017

theo bài ra ta có:

\(A=\dfrac{2011}{1.2}+\dfrac{2011}{3.4}+...+\dfrac{2011}{1999.2000}\)

\(\Rightarrow\dfrac{A}{2011}=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{1999.2000}\)

\(\Rightarrow\dfrac{A}{2011}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\)

\(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{1999}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)\)

\(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2000}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)\) \(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2000}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2000}\right)\) \(\Rightarrow\dfrac{A}{2011}=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{2000}\right)-\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{1000}\right)\) \(\Rightarrow\dfrac{A}{2011}=\dfrac{1}{1001}+\dfrac{1}{1002}+...+\dfrac{1}{2000}\)

\(\Rightarrow A=2011\left(\dfrac{1}{1001}+\dfrac{1}{1002}+...+\dfrac{1}{2000}\right)\left(1\right)\)

ta lại có:

\(B=\dfrac{2012}{1001}+\dfrac{2012}{1002}+...+\dfrac{2012}{2000}\\ \Rightarrow B=2012\left(\dfrac{1}{1001}+\dfrac{1}{1002}+...+\dfrac{1}{2000}\right)\left(2\right)\)

Từ 1 và 2 => A < B\

vậy A < B

5 tháng 1 2020

Bài 1:

\(A=3^{21};B=2^{31}.\)

Ta có:

\(3^{21}=\left(3^7\right)^3=2187^3.\)

\(2^{31}< 2^{33}=\left(2^{11}\right)^3=2048^3.\)

\(2187>2048\) nên \(2187^3>2048^3.\)

\(\Rightarrow3^{21}>2^{33}.\)

\(\Rightarrow3^{21}>2^{31}.\)

Hay \(A>B.\)

Bài 2:

Sắp xếp 100 số đã cho theo thứ tự tăng dần, chẳng hạn:

\(a_1\le a_2\le a_3\le...\le a_{100}.\)

Các số này đều khác 0 (vì nếu có 1 thừa số bằng 0 thì tích của nó với hai thừa số khác cũng bằng 0, trái với đề bài).

Xét tích \(a_{98}.a_{99}.a_{100}< 0\)

\(\Rightarrow a_{98}< 0\) (vì nếu \(a_{98}>0\Rightarrow\left\{{}\begin{matrix}a_{99}>0\\a_{100}>0\end{matrix}\right.\) , tích của ba số này không thể là một số âm).

\(\Rightarrow a_1,a_2,a_3,...,a_{98}\) là các số âm.

Xét tích \(a_1.a_2.a_{99}< 0\)

\(a_1.a_2>0.\)

\(\Rightarrow a_{99}< 0.\)

Xét tích \(a_1.a_2.a_{100}< 0\)

\(a_1.a_2>0.\)

\(\Rightarrow a_{100}< 0.\)

\(\Rightarrow a_1,a_2,a_3,...,a_{99},a_{100}< 0.\)

Vậy tất cả 100 số đó đều là số âm (đpcm).

Chúc bạn học tốt!

Câu 2:

Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến