Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/248+ 1/249
2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/248 + 1/249) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/249 + 1/250)
A = 1 - 1/250
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.......;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}< 1+3=4\)
Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 4\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{50}=4-\frac{1}{50}< 4\)
Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 4\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=1-\frac{1}{50}\)
\(\Rightarrow1>M\)
Ta có: 1/1.2+1/2.3+...+1/49.50
= 1-1/2+1/2-1/3+...+1/49-1/50
= 1-1/50
Ta có: 1-1/50 < 1 (luôn luôn đúng)
=> M<1
\(a,2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Có \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
\(b,S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=S=2^{51}-1< 2^{51}\)
a) Ta có :
\(2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Vì \(128^{100}>125^{100}\)\(\Rightarrow\)\(2^{700}>5^{300}\)
Vậy \(2^{700}>5^{300}\)
b) \(S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S < 251
_Chúc bạn học tốt_
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{49}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{49}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}\right)\)
\(2A=1-\frac{1}{3^{50}}< 1\)
\(A< \frac{1}{2}\)