K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{49}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{49}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}\right)\)

\(2A=1-\frac{1}{3^{50}}< 1\)

\(A< \frac{1}{2}\)

10 tháng 8 2016

2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/248+ 1/249

2A - A = (1 + 1/2 + 1/22 + 1/2+ ... + 1/248 + 1/249) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/249 + 1/250)

A = 1 - 1/250

13 tháng 3 2017

Ta có :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.......;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}< 1+3=4\)

Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 4\)

13 tháng 3 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{50}=4-\frac{1}{50}< 4\)

Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 4\)

1 tháng 5 2016

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=1-\frac{1}{50}\)

\(\Rightarrow1>M\)

1 tháng 5 2016

Ta có: 1/1.2+1/2.3+...+1/49.50

=        1-1/2+1/2-1/3+...+1/49-1/50

=        1-1/50

Ta có: 1-1/50 < 1 (luôn luôn đúng)

=> M<1

8 tháng 12 2015

> nhé bạn           

27 tháng 7 2018

\(a,2^{700}=\left(2^7\right)^{100}=128^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

Có \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)

\(b,S=1+2+2^2+...+2^{50}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)

\(\Rightarrow2S-S=S=2^{51}-1< 2^{51}\)

27 tháng 7 2018

a) Ta có :

\(2^{700}=\left(2^7\right)^{100}=128^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

Vì \(128^{100}>125^{100}\)\(\Rightarrow\)\(2^{700}>5^{300}\)

Vậy  \(2^{700}>5^{300}\)

b) \(S=1+2+2^2+...+2^{50}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)

\(\Rightarrow S=2^{51}-1< 2^{51}\)

Vậy S < 251

_Chúc bạn học tốt_