K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

\(A=1234566\cdot1234568+1234568-1234566\cdot1234568-1234566\) 

\(=1234568-1234566\) 

\(=2\) 

\(B=9876542\cdot9876544+9876544-9876542\cdot9876544-9876542\) 

\(=9876544-9876542\) 

\(=2\) 

Vậy \(A=B\)

17 tháng 8 2018

\(9876543.9876545-9876544^2\)

\(=\left(9876544-1\right)\left(9876544+1\right)-9876544^2\)

\(=\left(9876544^2-1\right)-9876544^2\)

\(=9876544^2-1-9876544^2\)

\(=-1\)

17 tháng 8 2018

9876543 x 9876545 - 98765442

= 9876543 x ( 9876544 + 1 ) - 9876544 x 9876544

= 9876543 x 9876544 + 9876543 - 9876544 x ( 9876543 + 1 )

= 9876543 x 9876544 + 9876543 - 9876544 x 9876543 - 9876544

= - 1

18 tháng 7 2017

\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)

Vậy \(A< B\)

13 tháng 1 2019

\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)

\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)

\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)

13 tháng 1 2019

Giải các câu khác giúp mình với 

25 tháng 2 2017

Xét: \(A=\frac{a+1}{a^2+a+1}-\frac{b+1}{b^2+b+1}=\frac{\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)}{\left(a^2+a+1\right)\left(b^2+b+1\right)}\)

Xét tử: \(T=\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)=ab^2-ba^2+ab-ba+a-b+b^2-a^2+b-a+1-1\)

\(=ab\left(b-a\right)+\left(a-b\right)+\left(b^2-a^2\right)-\left(a-b\right)\)

\(=ab\left(b-a\right)+\left(b-a\right)\left(b+a\right)=\left(b-a\right)\left(ab+a+b\right)< 0\), do a>b>0

Vậy A<0

Hay: \(\frac{a+1}{a^2+a+1}< \frac{b+1}{b^2+b+1}\)

25 tháng 2 2017

From \(a>b\Rightarrow a^2>b^2\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow\frac{1+a}{a^2+a+1}< \frac{1+b}{b^2+b+1}\)\(\Rightarrow x< y\) 

 lí luận tạm thời nên có thể chưa chặt chẽ

23 tháng 7 2016

1) 1

2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311

20122 + 20132 - 2 =8100311 . 

Vậy ta đã thấy 2 số bằng nhau

Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 2013- 2

23 tháng 7 2016

1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)

\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)

\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)

\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)

\(=1\)

Vậy \(B=1\)