Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
Vì \(2016^{2017}>2016^{2017}-3\)
\(\Rightarrow B>\frac{2016^{2017}}{2016^{2017}-3}>\frac{2016^{2017}+2}{2016^{2017}-3+2}=\frac{2016^{2017}+2}{2016^{2017}-1}=A\)
vậy \(A< B\)
Ta có: A = 1 + 2 + 22 + 23 + .... + 22016
=> 2A = 2 + 22 + 23 + 24 + ... + 22017
=> 2A - A = (2 + 22 + 23 + 24 + ... + 22017) - (1 + 2 + 22 + 23 + .... + 22016 )
=> A = 22017 - 1
Mà 22017 - 1 > 22017 - 2 => A > B.
Ta có :
A = 1 + 2 + 22 + 23 + ... + 22016
2A = 2 + 22 + 23 + 24 + ... + 22017
2A - A = ( 2 + 22 + 23 + 24 + ... + 22017 ) - ( 1 + 2 + 22 + 23 + ... + 22016 )
A = 22017 - 1
vậy A = B
Ta có:A=20+21+....+22016
2A=21+22+...+22017
2A-A=22017-20
A=22017-1
22017-1 =22017-1 nên A=B
Vậy A=B
A < B vì 2 + 22 + ....... + 22016 lớn hơn 22017
Bài này cũng khá dễ
Nghĩ một tí thôi
\(B=1+2+2^2+.........+2^{2016}\)
\(\Leftrightarrow2B=2+2^2+.....+2^{2017}\)
\(\Leftrightarrow2B-B=\left(2+2^2+....+2^{2017}\right)-\left(1+2+....+2^{2016}\right)\)
\(\Leftrightarrow B=2^{2017}-1\)
Mà \(A=2^{2017}-1\)
\(\Leftrightarrow A=B\)
2A = 2+22 +...+22017
-
A=1+2+...+22016
--------------------------------
A = 22017 - 1 < 22017 = B
=> A<B
học tốt
A=1+21+22+23+....+22016
A=20+21+22+23+...+22016
2A=2.(20+21+22+23+...+22016)
2A=21+22+23+24+...+22016
2A-A=(21+22+23+24+...+22016)-(20+21+22+23+...+22016)
A=22017-20
A=22017-20
B=22017
=>22017-20<22017
Nên A=22017-20<B=22017
Chúc bn học tốt