Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11^{12}< 11^{13}\)
\(7^4< 8^4\)
\(\left(6-5\right)^{132}=1^{132}=1\)
\(\left(7-6\right)^{543}=1^{543}=1\)
\(\Rightarrow\left(6-5\right)^{132}=\left(7-6\right)^{543}\)
\(37\left(3+7\right)=37.10=370\)
\(3^3+7^3=27+343=370\)
\(\Rightarrow37\left(3+7\right)=3^3+7^3\)
\(147\left(14+7\right)=147.21=3087\)
\(14^3+7^3=2744+343=3087\)
\(\Rightarrow147\left(14+7\right)=14^3+7^3\)
a) \(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\Rightarrow27^{11}>81^8\)
b) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(3^3\right)^7=3^{21}\)
Vì \(3^{20}< 3^{21}\Rightarrow625^5< 125^7\)
\(11^{12}< 11^{13}\)
\(7^4< 8^4\)
\(\left(6-5\right)^{432}=\left(7-6\right)^{943}\)
\(11^{12}< 11^{13}\)
\(7^4< 8^4\)
\(3^4>4^3\)
\(2^6>6^2\)
\(5^{15}>2^{30}\)
Giải:
a) Ta có:
\(11^{13}=11^{12}.11\)
Vì \(11^{12}< 11^{12}.11\)
\(\Leftrightarrow11^{12}< 11^{13}\)
Vậy ...
b)Ta có:
\(\left(6-5\right)^{432}=1^{432}=1\)
\(\left(7-6\right)^{543}=1^{543}=1\)
\(\Leftrightarrow\left(6-5\right)^{432}=\left(7-6\right)^{543}\)
Vậy ...
1. A - B = 40+ 3/8 + 7/82 + 5/83 + 32/85 - (24/82 + 40+ 5/82 + 40/84 + 5/84 )
= 40.85/85 + 3.84/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 40.85/85 + 24.83/85 + 7.83/85 + 5.82/85 + 32/85 - 24.83/85 - 40.85/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 + 32/85 - 5.83/85 - 40.8/85 - 5.8/85
= 7.83/85 + 5.82/85 -8/85 - 5.83/85 - 40.8/85
= 2.83/85 + 5.82/85 - 40.8/85 - 8/85
= 2.83/85 + 40.8/85 - 40.8/85 - 8/85
= 2.83/85 - 8/85 > 0
Vay A > B
a) 13^1 <13^15
b)7^3 < 8^3
c) 7 - 6 = 13-12
d) 2^300 <3^200
a) 11^12 < 11^13 vi 12<13
b) 7^4 < 8^4 vi 7<8
c) (6-5)^432 =(7-6) ^543 vi -1 ^432= 1 , 1^543= 1