Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)
Có \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
......
\(\frac{1}{2011^2}< \frac{1}{2010.2011}\)
=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2010.2011}\)
=> \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2010}-\frac{1}{2011}\)
=> \(A< 1-\frac{1}{2011}< 1\)
=> A < 1
=> A < B
1, Vì A, B < 1
\(\Rightarrow B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
2, Đề là thế này?? \(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+3+...+200\right)\)
\(\Rightarrow C=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{4.3}{2}+...+\frac{1}{200}.\frac{200.201}{2}\)
\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{201}{2}\)
\(\Rightarrow C=\frac{\left(2+201\right).200}{4}=10150\)
Ta có:
\(\frac{20^{10}+1}{20^{10}-1}\) và \(\frac{20^{10}-1}{20^{10}-3}\)
Phân số I lớn hơn 1 ( tử lớn hơn mẫu)
Phân số II nhỏ hơn 1 ( tử bé hơn mẫu )
\(\Rightarrow\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}-1}{20^{10}-3}\)
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)
Ta có: A=\(\frac{10^{20}+1}{10^{21}+1}\)< 1 => \(\frac{10^{20}+1+9}{10^{21}+1+9}\)<1 => \(\frac{10^{20}+1+9}{10^{21}+1+9}\) = \(\frac{10^{20}+10}{10^{21}+10}\)=\(\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}\)=\(\frac{10^{19}+1}{10^{20}+1}\)=>B<A
a) (x - 3)(y - 3) = 9 = 1.9 = 3.3
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 3 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 4 | 2 | 6 | 0 | 12 | -3 |
y | 12 | -6 | 6 | 0 | 4 | 2 |
Vậy ...
b) A = \(\frac{10^{19}+1}{10^{20}+1}\) => 10A = \(\frac{10^{20}+10}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
B = \(\frac{10^{20}+1}{10^{21}+1}\) => 10B = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Do \(10^{20}+1< 10^{21}+1\) => \(\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\) => 10A > 10B => A > B
\(A=\frac{1}{2}.\frac{2}{3}...\frac{19}{20}\)
\(A=\frac{1.2...19}{2.3...20}\)
\(A=\frac{1}{20}<\frac{1}{10}\)
=>A<\(\frac{1}{10}\)
A=1/2.2/3.3/4. ..... .19/20
A=1/20<1/10
VẬY A,1/10