Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^{30}\)và \(27^{20}\)
Ta có :
\(9^{30}=\left(9^3\right)^{10}=729^{10}\)
\(27^{20}=\left(27^2\right)^{10}=729^{10}\)
Vì \(729^{10}=729^{10}\)nên \(9^{30}=27^{20}\)
9^30 = (3^2)^30 = 3^60
27^20 = (3^3)20 = 3^60
=> 9^30 = 27^20
ta có :\(9^{31}=\left(3^2\right)^{31}=3^{62}\)
\(27^{21}=\left(3^3\right)^{21}=3^{63}\)
vì \(3^{62}< 3^{63}\)
nên \(9^{31}< 27^{21}\)
Ta có 921=(32)21=342
3.2714=3.(33)14=3.342=343
Vì 42<43.
Nên 342<343.
Vậy 921 < 3.2714
\(^{9^{30}=3^{2^{30}}=3^{60}}\) mặt khác 2720
2720\(=3^{3^{20}}\)=360
vậy 930=2720
a. \(9^{30}=\left(3^2\right)^{30}=3^{60}\)(1)
\(27^{20}=\left(3^3\right)^{20}=3^{60}\)(2)
Từ (1) và (2) => 930=2720.
b. \(2^{110}=\left(2^{11}\right)^{10}\)
\(5^{140}=\left(5^{14}\right)^{10}\)
-> Vì cùng số mũ nên xét 211 và 514.
Ta có: 2 < 5 và 11 < 14
=> 211 < 514
=> (211)10 < (514)10
Vậy 2110 < 5140.
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
Đổi \(9^{30}=3^{2^{30}}=3^{60}\); \(27^{21}=3^{3^{21}}=3^{63}\)
Vì \(3^{63}>3^{60}\Rightarrow27^{21}>9^{30}\)