Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1631 = (24)31 = 24.31 = 2124
841 = (23)41 = 23.41 = 2123
Vì 124 > 123 => 2124 > 2123
=> 1631 > 841
16^31 = 8^2^31
=8^62
Vì 8^62 > 8^41 nên 16^31 > 8^41
a)dễ thấy :
3^200 = (3^2)^100=9^100
2^300=(2^3)^100=8^100
nên.......
b)tương tự :
125^5=5^15
25^7=5^14
=> ......
c) 9^20 = 3^40
27^13=3^39
=>..........
các câu còn lại tương tự như 3 câu trên nhé ..... ^^
__cho_mình_nha_chúc_bạn_học _giỏi__
a, 3^200= (3^2)^100= 9^100
2^300= (2^3)^100= 8^100
Vì 9^100>8^100 nên 3^200>2^300
b, 125^5= (5^3)^5= 5^15
25^7= (5^2)^7= 5^14
Vì 5^15>5^14 nên 125^5>25^7
a,\(\frac{56}{55}>1\)
\(\frac{2018}{2019}< 1\)
Do đó \(\frac{56}{55}>\frac{2018}{2019}\)
b,\(\frac{15}{17}=1-\frac{2}{17}\)
\(\frac{9}{11}=1-\frac{2}{11}\)
Ta có \(\frac{2}{11}>\frac{2}{17}\Rightarrow1-\frac{2}{11}< 1-\frac{2}{17}\Rightarrow\frac{15}{17}>\frac{9}{11}\)
c và d tương tự phần b
Mai Anh tính sai rồi nha bạn dù kết quả của bạn vẫn đúng nha
27^150 = (3^3)^150 = 3^450
9^226= (3^2)^226 = 3^452
Mà 3^452 > 3^450 suy ra 9^226 > 27^150
1. 5217>11972
2. 371320>111979
3. 321<231
xem đúng không nha.
Bài này ở lp 6 làm nhiều r ` mà, cô giảng, bn ko tiếp thu được à .
a) TA CÓ: \(5^{217}>5^{216}=\left(5^3\right)^{72}=125^{72}>119^{72}\Rightarrow5^{217}>119^{72}\)
b) Ta có: \(37^{1320}=\left(37^2\right)^{660}=1369^{660}\); \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)Mà
\(1369^{660}>1331^{660}\Rightarrow37^{1320}>11^{1970}\)
a) Ta có: 5217 = 53.72+1 = (53)72 . 5 = 12572 . 5
Vì 12572 > 11972 nên 5217 > 11972
c) Ta có: 321 = 310.2+1 = 32 . 310 . 3 = 27. 310
231= 23.10+1 = 23 . 210 . 2= 16. 210
Vì 27. 310 > 16. 210 nên 321 > 231
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(17A=\frac{17^{19}+17}{17^{19}+1}=\frac{\left(17^{19}+1\right)+16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(17B=\frac{17^{18}+17}{17^{18}+1}=\frac{\left(17^{18}+1\right)+16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(\text{Vì}\)\(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
\(\Leftrightarrow17A< 17B\)
\(\Leftrightarrow A< B\)
Trả lời
\(17A=\frac{\left(17^{18}+1\right)17}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=\frac{17^{19}+1}{17^{19}+1}+\frac{16}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(17B=\frac{\left(17^{17}+1\right)17}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=\frac{17^{18}+1}{17^{18}+1}+\frac{16}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
Vì \(17^{19}+1>17^{18}+1\)
\(\Rightarrow\frac{16}{17^{18}+1}>\frac{16}{17^{19}+1}\)
\(\Rightarrow1+\frac{16}{17^{18}+1}>1+\frac{16}{17^{19}+1}\)
\(\Rightarrow B>A\)
917 và 2711
Ta có:
917 = ( 32 )17 = 32.17 = 334
2711 = ( 33 )11 = 33.11 = 333
VÌ 334 > 333 => 917 > 2711
Vậy 917 > 2711
Học tốt!!!