
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


3012 = (304)3 = 8100003
1018 = (106)3 = 10000003
Ta thấy 8100003 < 10000003 nên 3012 < 1018
536 = (53)12 = 12512
1024 = (102)12 = 10012
Ta thấy 12512 > 10012 nên 536 > 1024

Bài 1: a) (2x+1)2 = 25
(2x+1)2 = 52
=> 2x + 1 = 5 hoặc 2x+1 = -5
=> x=2 hoặc x=-3
b) 2x+2 - 2x = 96
<=> 2x . 22 - 2x = 96
<=> 2x(4-1) =96
<=>2x = 96 :3 = 32 = 25
<=> x = 5
c) (x-1)3 = 125
<=> (x-1)3 = 53
<=> x-1=5
<=>x= 5 +1 = 6

7 = 3 + 4 = √9 + √16
Do 10 > 9 nên √10 > √9
17 > 16 nên √17 > √16
⇒ √10 + √17 > √9 + √16
Vậy √10 + √17 > 7
--------
(1/8)²³ = 1/(2³)²³ = 1/2⁶⁹
(1/32)¹⁶ = 1/(2⁵)¹⁶ = 1/2⁸⁰
Do 69 < 80 nên 2⁶⁹ < 2⁸⁰
⇒ 1/2⁶⁹ > 1/2⁸⁰
Vậy (1/8)²³ > (1/³²)¹⁶
--------
5 = √25
Do 27 > 25 nên √27 > √25
Vậy √27 > 5

a) ta thấy -59/1310 <0 còn -1/-9=1/9 nên > 0. Vì vậy phân số -1/-9> -59/1310
b)-3/7<0 còn -1/-5> 0 nên -3/7<-1/-5
c) ta có:13/17 <1 còn -23/-27=23/27> 1nen -23/-27>13/17

a, 2^24 > 3^16
b, 5^300>3 ^500
c,99^20 > 9999^10
d, 2^30 +3^44 +4^30 < 3x24^10

Câu a:
2\(^{300}\) và 3\(^{200}\)
2\(^{300}\) = (2\(^3\))\(^{100}\) = 8\(^{100}\)
3\(^{200}\) = (3\(^2\))\(^{100}\) = 9\(^{100}\)
8\(^{100}\) < 9\(^{100}\)
Vậy 2\(^{300}\) < 3\(^{200}\)
câu b:
99\(^{20}\) và 9999\(^{10}\)
99\(^{20}\) = (99\(^2\))\(^{10}\) = 9801\(^{10}\)
9999\(^{10}\) > 9801\(^{10}\)
Vậy 99\(^{20}\) < 9999\(^{10}\)
Câu c:
3\(^{500}\) và \(7^{300}\)
3\(^{500}\) = (3\(^5\))\(^{100}\) = 243\(^{100}\)
7\(^{300}\) = (7\(^3\))\(^{100}\) = 343\(^{100}\)
243\(^{100}\) < 343\(^{100}\)
Vậy 3\(^{500}\) < 7\(^{300}\)
Câu d:
11\(^{1979}\) và 37\(^{1320}\)
11\(^{1979}\) < 11\(^{1980}\) = (11\(^3\))\(^{660}\) = 1331\(^{660}\)
37\(^{1320}\) = (37\(^2\))\(^{660}\) = 1369\(^{660}\)
1331\(^{660}<1369^{660}\)
Vậy 11\(^{1979}\) < 37\(^{1320}\)
a) ta co : 9^12 = 3^24 = 27^8
vi 8>7 suy ra 9^12>37^7
b) ta co : 3^500 = 243^100;7^300 = 343^100
vi 243<343 suy ra 3^500<7^300
c) ta co : (1/32)^10 = (1/2)^50;(1/4)^24 = (1/2)^48
vi 50>48 suy ra (1/32)^10>(1/4)^24