Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\frac{5^{100}+7}{5^{100}+5}\)=\(\frac{5^{100}+6+1}{5^{100}+4+1}\)
Mà \(\frac{5^{100}+6+1}{5^{100}+4+1}\)>\(\frac{5^{100}+6}{5^{100}+4}\)
\(\Rightarrow\)B>A
Ta có:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
\(...\)
\(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow M< N\)
\(A=\dfrac{100^{100}-1}{100^{100}-5}=\dfrac{\left(100^{100}-1\right)\left(100^{100}+1\right)}{\left(100^{100}-5\right)\left(100^{100}+1\right)}=\dfrac{100^{200}-1}{\left(100^{100}-5\right)\left(100^{100}+1\right)}\)
\(B=\dfrac{100^{100}+5}{100^{100}+1}=\dfrac{\left(100^{100}+5\right)\left(100^{100}-5\right)}{\left(100^{100}-5\right)\left(100^{100}+1\right)}=\dfrac{100^{200}-25}{\left(100^{100}-5\right)\left(100^{100}+1\right)}\)
\(\Rightarrow A>B\)
M=(1.3.5.7.....99)/(2.4.6.8.....100)
số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500
số số hạng của mẫu = (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550
--> M= 2500/2550 =50/51
Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N
Áp dụng a/b > 1 => a/b > a+m/b+m (a,b,m thuộc N*)
=> \(\frac{5^{100}+6}{5^{100}+4}>\frac{5^{100}+6+1}{5^{100}+4+1}\)
\(>\frac{5^{100}+7}{5^{100}+5}\)