Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)
Ta có :
\(1-\frac{2}{3}=\frac{1}{3};1-\frac{4}{5}=\frac{1}{5};1-\frac{7}{8}=\frac{1}{8};1-\frac{3}{4}=\frac{1}{4}\)
\(1-\frac{9}{10}=\frac{1}{10};1-\frac{8}{9}=\frac{1}{9};1-\frac{5}{6}=\frac{1}{6};1-\frac{6}{7}=\frac{1}{7}\)
Do \(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{7}>\frac{1}{8}>\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow1-\frac{1}{3}< 1-\frac{1}{4}< 1-\frac{1}{5}< 1-\frac{1}{6}< 1-\frac{1}{7}< 1-\frac{1}{8}< 1-\frac{1}{9}< 1-\frac{1}{10}\)
\(\Rightarrow\frac{2}{3}< \frac{3}{4}< \frac{4}{5}< \frac{5}{6}< \frac{6}{7}< \frac{7}{8}< \frac{8}{9}< \frac{9}{10}\)
Nếu \(\frac{a}{b}\)là 1 số thuộc dãy trên thì số tiếp theo là :
\(\frac{a+1}{b+1}\)
\(b)\)
Ta có :
\(a\left(a+2\right)=a^2+2a\)
\(b\left(a+1\right)=ab+b\)
Sorry , đến bước này mik chịu
~ Ủng hộ nhé
Phần b) Ý bạn là so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+2}\)
ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)= \(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\)
B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)= \(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)
vì \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B
a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)
Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)
vậy 8A>8B nên A>B
\(\sqrt{4}\)=2
4 8/5= 5 3/5
3
=> 5 3/5 > 3> 2