Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{24}\)
\(\Rightarrow27^{11}>81^8\)
b) \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
c) \(5^{23}=5\cdot5^{22}\)
Ta có: \(6>5;5^{22}=5^{22}\)
\(\Rightarrow5^{23}< 6\cdot5^{22}\)
a, 1619 = (24)19 = 276
825 = (23)25 = 275
Vì 76 > 75
=> 276 > 275
=> 1619 > 825
Vậy 1619 > 825
\(\frac{-10}{11}=-10.\frac{1}{11}\)
\(\frac{-10}{10}=-10.\frac{1}{10}\)
Có 1/11<1/10
=>-10/11>-10/10
Vậy ...................
Ta thấy : 11 > 10
\(\Rightarrow\frac{-10}{11}< \frac{-10}{10}\)
Vậy ..........
(x+1/4-1/3).(13/6-1/4)=7/46
(x+1/4-1/3).23/12=7/46
(x+1/4-1/3)=7/46:23/12
(x+1/4-1/3)=7/46.12/23
(x+1/4-1/3)=42/529
x+1/4=42/529+1/3
x+1/4=655/1587
x=655/1587-1/4
x=1033=/6348
vậy x=1033/6348
1 )Ta có
\(M=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).....\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{4}{3}\cdot\dfrac{-3}{4}\cdot\dfrac{5}{4}\cdot\cdot\cdot\cdot\dfrac{-99}{100}\cdot\dfrac{101}{100}\)
\(=\dfrac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot3\cdot\left(-4\right)\cdot4\cdot\left(-5\right)\cdot5....\cdot\left(-100\right)\cdot100\cdot101}{2^2\cdot3^2\cdot4^2....\cdot100^2}\)
\(=-\dfrac{101}{200}< \dfrac{1}{2}\)
2 ) Số phân số của biểu thức B là 180 phân số
Ta có
\(\dfrac{1}{20}>\dfrac{1}{200};\dfrac{1}{21}>\dfrac{1}{200};\dfrac{1}{22}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow B=\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}\cdot180=\dfrac{9}{10}\)
\(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{21}.\)
\(3^{39}< 11^{21}\)
Ta có \(3^{39}< 3^{40}\) (1)
\(3^{40}=3^{2.20}=\left(3^2\right)^{20}=9^{20}\) mà \(9^{20}< 11^{21}\)
nên \(3^{40}< 11^{21}\) (2)
Từ (1) (2) => \(3^{39}< 3^{40}< 11^{12}\)
=> \(3^{39}< 11^{12}\) ( đpcm )
\(3^{39}and11^{21}\)
\(3^{39}< 3^{42};3^{42}=3^{6.7}=\left(3^6\right)^7=729^7\)
\(11^{21}=11^{3.7}=\left(11^3\right)^7=1331^7\)
Mà \(729^7< 1331^7\)
\(\Rightarrow3^{42}< 11^{21}\)
Giải:
Ta có:
\(3^{39}=\left(3^{13}\right)^3=1594323^3\)
\(11^{21}=\left(11^7\right)^3=19487171^3\)
Vì \(1594323< 19487171\)
Nên \(1594323^3< 19487171^3\)
Hay \(3^{39}< 11^{21}\)
Vậy \(3^{39}< 11^{21}\).