Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
323=321.32=(33)7.9=277.9
515=514.5=(52)7.5=257.5
vì 27>25;9>7 nên 277.9>257.5
hay 323>515
a) \(\sqrt{3}+5=\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)
b) \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
d) \(\sqrt{48}+\sqrt{120}< \sqrt{49}+\sqrt{121}=7+11=18\)
Bài 1:
a) \(\dfrac{-17}{36}\) và \(\dfrac{23}{-48}\)
\(\dfrac{-17}{36}=\dfrac{-17.4}{36.4}=\dfrac{-68}{144}\)
\(\dfrac{23}{-48}=\dfrac{-23}{48}=\dfrac{-23.3}{144.3}=\dfrac{-69}{144}\)
Vì \(\dfrac{-68}{144}>\dfrac{-69}{144}\) nên \(\dfrac{-17}{36}>\dfrac{23}{-48}\)
b) \(\dfrac{-1}{3}\) và \(\dfrac{2}{5}\)
Vì \(\dfrac{-1}{3}\) là số âm mà \(\dfrac{2}{5}\) là số dương nên \(\dfrac{-1}{3}< \dfrac{2}{5}\)
c) \(\dfrac{2}{7}\) và \(\dfrac{5}{4}\)
Vì \(\dfrac{2}{7}< 1\) mà \(\dfrac{5}{4}>1\) nên \(\dfrac{2}{7}< \dfrac{5}{4}\)
d) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\)
\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\)
Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
Bài 2:
\(\dfrac{5}{2}-\left(1\dfrac{3}{7}-0,4\right)=\dfrac{5}{2}-\dfrac{10}{7}-\dfrac{2}{5}=\dfrac{47}{70}\)
Vì căn bậc 2 của 23 < căn bậc 2 của 25=5^2
căn bậc 2 của 15 <căn bậc 2 của 16=4^2
mà căn bậc 2 của 91 > căn bậc 2 của 81=9^2
Vậy căn bậc 2 của 91 > căn bậc 2 của 23 + căn bậc 2 của 15
\(\sqrt{23}+\sqrt{15}=8,66881487\)
\(\sqrt{91}=9,539392014\)
Vậy: \(\sqrt{23}+\sqrt{15}< \sqrt{91}\)
323>515
giải ra