Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10^12+17=100..000+17=100..017=>1+0+0+..+0+1+7=1+1+7=9 chia hết cho 9
b) 30 chia hết cho 2n+13
=>2n+13 thuộc Ư(30)={1;2;3;5;6;10;15;30}
+/2n+13=1=>2n=-12=>n=-6
+/... bạn tự tính nhá
c)27^5=(3^3)^5=3^15
243^3=(3^5)^3=3^15
=>27^5=243^3
Ta có: \(31^{111}\)\(< 32^{111}\) và \(17^{139}>16^{139}\)
Ta lại có: \(31^{111}=\left(2^5\right)^{111}=2^{555}\)
\(16^{139}=\left(2^4\right)^{139}=2^{556}\)
Vì \(2^{555}< 2^{556}\) nên \(17^{139}>2^{556}>31^{111}\)
⇒ \(17^{139}>31^{111}\)
Vậy \(17^{139}>31^{111}\)
b,
Gọi số cần tìm là: x (x ≠ 0; x∈ N)
Ta có:
x: 5 dư 3 ⇒ x+3 chia hết cho 5 ⇒ 7x+21 chia hết cho 35
x: 7 dư 4⇒ x+4 chia hết cho 7⇒ 5x+20 chia hết cho 35
⇒ (7x+21) - (5x+20) chia hết cho 35
⇒7x+21- 5x-20 chia hết cho 35
⇒ (7x- 5x)+(21-20) chia hết cho 35
⇒ 2x+1 chia hết cho 35
⇒ 2x+1 ∈ { 5; -5; 7; -7; 35; -35 }
⇒ 2x ∈ { 4; -6; 6; -8; 34; -36 }
⇒ x ∈ { 2; -3; 3; -4; 17; -18 }
Vậy x= 2
a. 102012+17 = 10...017 ( 2010 số 0)
Tổng các chữ số: 1+0+1+7 = 9 chia hết cho 9
b. => 2n+13 \(\in\)Ư(30)={1; 2; 3; 5; 6; 10; 15; 30}
Mà n là số tự nhien
=> 2n+13 \(\in\){15; 30}
+) 2n+13=15
=> 2n=2
=> n=1
+) 2n+13=30
=> 2n=17
=> n=8,5 (loại)
Vậy n=1.
c. \(A=27^5=\left(3^3\right)^5=3^{15}=\left(3^5\right)^3=243^3=B\Rightarrow A=B.\)
a) 102012 + 17 = 100...017 (2010 chữ số 0) có tổng các chữ số là 1 + 0 + ... + 0 + 1 + 7 = 9 chia hết cho 9 nên số này chia hết cho 9
- Bài 1:
a)\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)\)
\(=7^4.55=7^4.5.11⋮11\)
b)\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{26}.5\)
\(=3^{24}.3^2.5=3^{24}.45⋮45\)
c) \(10^9+10^8+10^7=10^7\left(10^2+10+1\right)\)
\(=10^7.111=10^6.10.111\)
\(=10^6.1110=10^6.2.555⋮555\)
- Bài 5:
a) \(5^{28}=\left(5^2\right)^{14}=25^{14}\)
Vì \(25^{14}< 26^{14}\) => \(5^{28}< 26^{14}\)
320 > 230
LÀ số 351
320 = 32.10 = 910
230 = 23.10 = 810
Vậy 320 > 230
STN đó là 351