Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 210 = 22.5 = 322 > 102
b, 2300 = 2100.3 = 6100
3200 = 32.100 = 9100
6100 < 9100
nên : 3200 > 2300
So sánh :
b) 2^300 và 3^200
Ta có :
2^300 = ( 2^3 )^100 = 8^100
3^200 = ( 3^2 )^100 = 9^100
Vì 8^100 < 9^100 => 2^300 < 3^200
Vậy 2^300 < 3^200
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
vi \(8^{100}< 9^{100}\)nen \(2^{300}< 3^{200}\)
3200 = 32.100= ( 32)100
2300 = 23.100 = (23)100
Vì 32 > 23 nên (32)100 > ( 23)100 hay 3200> 2300
1) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Do 9^100 > 8^100 => 3^200 > 2^300
2) 4x+3 - 3.4x+1= 13.411
4x+1.42 - 3.4x+1= 13.411
4x+1 ( 42 - 3) = 13.411
4x+1 . 13 = 13. 411
4x+1 = 411
=> x + 1 = 11
=> x= 10
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
\(243^{100}< 343^{100}\Rightarrow3^{500}< 7^{300}\)
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
\(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(4^{300}=\left(4^3\right)^{100}=64^{100}\)
Vì \(81^{100}>64^{100}\Rightarrow3^{400}>4^{300}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(8^{100}< 9^{100}=>2^{300}< 3^{200}\)
UCLN (300 , 200 )=100
2^300 = 2^100 x 3 = (2^3)^100= 8^100
3^200= 3^100 x 2= (3^2) ^100= 9^100
vì 8^100 < 9^100
=>2^300 < 3^200
2300 = (23)100 = 8100
3200 = (32)100 = 9100
8100 < 9100
nên 2300 < 3200
\(a.\frac{1}{2^{300}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{8^{100}}\)
\(\frac{1}{3^{200}}=\frac{1}{\left(3^2\right)^{100}}=\frac{1}{9^{100}}\)
\(\text{Vì }\frac{1}{8}>\frac{1}{9}\Rightarrow\frac{1}{\left(2^3\right)^{100}}>\frac{1}{\left(3^2\right)^{100}}\Rightarrow\frac{1}{2^{300}}>\frac{1}{3^{200}}\)
\(b.\frac{1}{5^{199}}:\text{Giữ nguyên}\)
\(\frac{1}{3^{200}}=\frac{1}{3^{199}\cdot3}\)
\(\frac{1}{5^{199}}< \frac{1}{3^{199}\cdot3}\Rightarrow\frac{1}{5^{199}}< \frac{1}{3^{200}}\)
2 bài dưới bn làm tương tự nhé
3^200 =(3^2)^100 = 9^100
2^300 = (2^3)^100 = 8^100
8^100 < 9^100 => 3^200 > 2^300
3^400 = (3^4)^100 = 81^100
4^300 = (4^3)^100 = 64^100
81^100 > 64^100 => 3^400 > 4^300
k mik nha!
227=(23)9=89
318=(32)9=99
vì 9>8=>99>89