Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x-3\right)^2+5\ge5\forall x\)
Vậy đa thức trên ko có nghiệm
x2 + 4x + 10
Ta có : \(x^2\ge0\forall x\)
4x \(\ne\) 0 với x âm ; 4x \(\ne\) 0 với x dương
\(10\ne0\)
=> \(x^2+4x+10\ne0\)
=> Vô nghiệm ( đpcm )
@Trần Nhật Quỳnh@ phân tích này mới đúng
\(x^2+4x+10=x^2+4x+2+8=\left(x^2+4x+2\right)+8=\left(x+2\right)^2+8\)
Ta thấy \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+8>0\forall x\)hay \(x^2+4x+10>0\forall x\)
=> Đa thức \(x^2+4x+10\)không có nghiệm
Câu 1 :
Đặt A = n(n+1)(2n+1)
+ n = 2k => A chia hết cho 2
+ n =2k+1 => n+1 = 2k+1+1 =2(k+1) chia hết cho 2 => A chia hết cho 2
Vậy A luôn chia hết cho 2 (1)
+n=3k => A chia hết cho 3
+n= 3k+1 => 2n+1 = 2(3k+1)+1 = 3(2k+1) chia hết cho 3=> A chia hết cho 3
+n= 3k+2 => n+1 = 3k+2+1 =3(k+1) chia hết cho 3
Vậy A luôn chia hết cho 3 (2)
Từ (1);(2) => A chia hết cho 2.3 =6 Với mọi n thuộc N
Ta có: P(x) = 2 . ( x2 + 4x ) + 17
= 2 . ( x2 + 2 . x . 2 + 22 - 22 ) + 17
= 2 . [ ( x2 + 2 . x . 2 + 22 ) - 22 ] + 17
= 2 . [ ( x + 2 )2 - 4 ] + 17
= 2 . ( x + 2 )2 - 8 + 17
= 2 . ( x + 2 )2 + 9
Vì ( x + 2 )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2 . ( x + 2 )2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2 . ( x + 2 )2 + 9 \(\ge\) 9 \(>\) 0 với mọi x
\(\Rightarrow\) P(x) \(\ge\) 0 với mọi x
\(\Rightarrow\)Đa thức P(x) không có nghiệm
Bài 3:
a/ Dấu hiệu ở đây là thời gian làm bài ( tính theo phút ) của mỗi học sinh ( ai cũng làm được )
Có 30 giá trị. Có 6 giá trị khác nhau.
b/
Giá trị (x) 5 7 8 9 10 14
Tần số (n) 4 3 8 8 4 3 N= 30
c) Tính Trung bình cộng:
_
X = 4.5+7.3+8.8+9.8+10.4+14.3 / 30= 259:30 = 8,6 phút
\(C\left(x\right)=2x^2+4x+7=2x^2+4x+2+5\)
\(C\left(x\right)=2\left(x^2+2x+1\right)+5=2\left(x^2+x+x+1\right)+5\)
\(C\left(x\right)=2\left[x\left(x+1\right)+\left(x+1\right)\right]+5\)
\(C\left(x\right)=2\left(x+1\right)^2+5\). Vì \(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+5\ge5>0\forall x\)
=> Đa thức không có nghiệm
( Nếu là lớp 8 thì dùng hằng đẳng thức ra ngay nhưng mà bạn lớp 7 thì mình phân tích ra nhé )
Ta có:
2 < 3 ; 99 < 999
=> 299 < 3999
299<3999