Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 4,(56)= 4,5656….
Vì 4,5656… > 4,56279 nên 4,(56) > 4,56279
b) Ta có:
-3,(65) = -3,6565…
Vì 3,6565… > 3,6491 nên -3,6565…< -3,6491. Do đó, -3,(65) < -3,6491;
c) 0,(21)=\(\frac{7}{{33}}\) và 0,2(12)= \(\frac{7}{{33}}\) nên 0,(21) = 0,2(12).
d) \(\sqrt 2 = 1,41421...\)< 1,42.
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}\)\(=\sqrt{1.2}+\sqrt{2.3}+\sqrt{3.4}+...+\sqrt{10.11}\)
\(< \frac{1+2}{2}+\frac{2+3}{2}+\frac{3+4}{2}+...+\frac{10+11}{2}\)\(=\frac{1}{2}\left[\left(1+2+3+...+10\right)+\left(2+3+4+...+11\right)\right]\)\(=\frac{1}{2}\left(\frac{11.10}{2}+\frac{13.10}{2}\right)=\frac{1}{2}\left(55+65\right)=60\)
Vậy \(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}< 60.\)
So sánh:
a) 2, 45865 2, (5)
b ) 34,(65) 34, (15)
c) 56, 1285766 56 , 1285765
d ) \(\frac{-7}{10}\) -0, 7
a)2,45865<2,(5)
b)34,(65)>34,(15)
c)56,1285766>56,1285765
d)-7/10=-0,7
a ) 2,45865 < 2.(5)
b) 34,(65) >34,(15)
c) 56,1285766 > 56,1285765
d) \(\frac{-7}{10}\)= -0,7
1/
a, xem lại đề
b, \(\sqrt{6}+\sqrt{12}+\sqrt{30}+\sqrt{56}< \sqrt{6,25}+\sqrt{12,25}+\sqrt{30,25}+\sqrt{56,26}=2,5+3,5+5,5+7,5=19\)
2/
a, \(\sqrt{26}+\sqrt{17}>\sqrt{25}+\sqrt{16}=5+4=9\)
b, xem lại
4/
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-2}=\frac{\sqrt{x}-2+3}{\sqrt{x}-2}=1+\frac{3}{\sqrt{x}-2}\)
Để \(B\in Z\Leftrightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng
\(\sqrt{x}-2\) | 1 | -1 | 3 | -3 |
\(\sqrt{x}\) | 3 | 1 | 5 | -1 |
x | loại | 1 | loại | loai |
Vậy...
Lời giải:
$2^{56}=(2^{28})^2> (2^3)^2=8^2> 5^2$
256 và 52
256 = (23)2.250 = 250.82 >52
vậy 256 > 52