Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 => 8100 < 9100
=> 2300 < 3200
b) Hình như đề sai Phải so sánh với 3.2410 chứ bạn
Ta có: \(3.24^{10}=3.\left(3.2^3\right)^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
Ta có 2*300 = (2*3)*100 = 8*100
3*200 = (3*2)*100 = 9*100
=> 2*300 < 3*200
\(10^{30}vs\)\(2^{100}\)
\(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}=>10^{30}< 2^{100}\)
\(3^{54}vs2^{81}\)
\(3^{54}=\left(3^6\right)^9=729^9\)
\(2^{81}=\left(2^9\right)^9=512^9\)
Vì \(729^9>512^9=>3^{54}>2^{81}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(8^{100}< 9^{100}=>2^{300}< 3^{200}\)
330 = 32.15 = 915<1015
=> 330<1015
học tốt
#R.I.P
ta có 10^15 > 9 ^ 15 = (3^2)^15 = 3^ 30
=> 10^15 > 3^30
vậy....................................
a] 5200 và 3300
Ta có: 5200 = (52)100 = 25100 (1)
3300 = (33)100 = 27100 (2)
Từ 1 và 2 => 5200 < 3300
Do -5/7 < 0
3/200 > 0
=> -5/7 < 3/200
Ủng hộ mk nha ^_-
Do \(\frac{5}{7}< 0\)
\(\frac{3}{200}>0\)
\(\Rightarrow\frac{5}{7}< \frac{3}{200}\)
4100 và 2200
2200 = (22)100 = 4100
Vì 4100 = 4100 nên => 4100 = 2200
3x2423=3x323x823=324x(23)23=324x249
ta chứng minh 430>249 rồi => A>B
\(2^{30}< 2^{300}< 3^{200}\)
\(\Rightarrow2^{30}< 3^{200}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}=9^{30}\cdot9^{70}\)
Vì \(9>2\) nên \(9^{30}>2^{30}\) hay \(9^{30}\cdot9^{70}>2^{30}\)
Từ đó \(9^{100}>2^{30}\) hay \(2^{30}< 3^{200}\)