K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Đặt \(A=\frac{2^{2017}+1}{2^{2018}+1}\Rightarrow2A=\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

\(B=\frac{2^{2018}+1}{2^{2019}+1}\Rightarrow2B=\frac{2^{2019}+2}{2^{2019}+1}=\frac{2^{2019}+1+1}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Vì \(2^{2019}+1>2^{2018}+1\Rightarrow\frac{1}{2^{2019}+1}< \frac{1}{2^{2018}+1}\)

\(\Rightarrow2A>2B\Rightarrow A>B\)

11 tháng 9 2018

Dễ thế MJ!!11

9 tháng 10 2018

\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)

\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)

\(=2018^{2020}-2017\)

15 tháng 10 2018

\(M=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

Gọi \(A=2018^{2019}+2018^{2018}+...+2018^2+2018\)

\(\Rightarrow2018A=2018^{2020}+2018^{2019}+...+2018^3+2018^2\)

\(\Rightarrow2018A-A=2018^{2020}-2018\)

\(\Rightarrow2017A=2018^{2020}-2018\)

\(\Rightarrow A=\left(2018^{2020}-2018\right)\div2017\)

\(\Rightarrow M=\left(2018^{2020}-2018\right)\div2017.2017+1\)

\(\Rightarrow M=2018^{2020}-2018+1\)

\(\Rightarrow M=2018^{2020}-2017\)

14 tháng 10 2018

A=22019-(22018+22017+...+21+20)

Đặt M =22018+22017+...+21+20

M=22018+22017+...+2+1

2M=22019+22018+...+22+2

2M-M=(22019+22018+...+22+2)-(22018+22017+...+2+1)

M=22019-1

Suy ra:A=22019-(22019-1)

A=22019-22019+1

A=1

Vậy A=1

14 tháng 10 2018

Ta có : \(A=2^{2019}-\left(2^{2018}+2^{2017}+...+2^1+2^0\right)\)

Đặt \(B=2^0+2^1+...+2^{2017}+2^{2018}\\ \Rightarrow2B=2+2^2+...+2^{2019}\\ \Rightarrow2B-B=\left(2+2^2+...+2^{2019}\right)-\left(2^0+2^1+...+2^{2017}+2^{2018}\right)\\ \Rightarrow B=2^{2019}-2^0\\ \Rightarrow A=2^{2019}-\left(2^{2019}-2^0\right)\\ \Rightarrow A=2^0=1\)

Vậy A=1

26 tháng 2 2019

A = B thì  phải

26 tháng 2 2019

no.A=B.ok

NM
24 tháng 7 2021

a. ta có \(3^{102}=3^{3\times34}=27^{34}>25^{34}=5^{2\times34}=5^6\text{ vậy }3^{102}>5^{68}\)

b. ta có \(C=1+2+..+2^{2017}\text{ nên }2C=2+2^2+...+2^{2018}\)

lấy hiệu ta có : \(C=\left(2+2^2+..+2^{2018}\right)-\left(1+2+..+2^{2017}\right)=2^{2018}-1< 2^{2018}\)

Vậy \(C< 2^{2018}\)

c. dễ thấy \(C>\frac{1}{2}=F\)

d. ta có \(5G=1+\frac{1}{5}+..+\frac{1}{5^{2016}}\Rightarrow4G=1-\frac{1}{5^{2017}}\)hay \(G=\frac{1}{4}-\frac{1}{4\times5^{2017}}< \frac{1}{4}=H\text{ hay }G< H\)

16 tháng 8 2017

Ta có \(A=1+2+2^2+2^3+...+2^{2017}\)

Suy ra\(2.A=2+2^2+2^3+2^4+....+2^{2018}\)

Khi đó \(2A-A=2+2^2+2^3+2^4+....+2^{2018}-\left(1+2+2^2+2^3+....+2^{2017}\right)\)

Hay \(A=2^{2018}-1\)

Ta thấy \(A=2^{2018}-1\)\(B=2^{2018}-1\)nên \(A=B\)

Vậy \(A=B\)

2 tháng 1 2020

\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)

\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x>y\)