Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\left\{{}\begin{matrix}VT=\frac{2018-1}{2018}=1-\frac{1}{2018}\\VP=\frac{2019-1}{2019}=1-\frac{1}{2019}\end{matrix}\right.\)
Ta thấy : \(2019>2018\)
=> \(\frac{1}{2019}< \frac{1}{2018}\)
=> \(-\frac{1}{2019}>-\frac{1}{2018}\)
=> \(1-\frac{1}{2019}>1-\frac{1}{2018}\)
=> \(VP>VT\left(hay\frac{2018}{2019}>\frac{2017}{2018}\right)\)
a) \(\left(2^{2016}+2^{2017}+2^{2018}\right):\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=\dfrac{2^{2016}+2^{2017}+2^{2018}}{2^{2014}+2^{2015}+2^{2016}}\)
\(=\dfrac{2^{2016}\left(1+2+2^2\right)}{2^{2014}\left(1+2+2^2\right)}\)
\(=\dfrac{2^{2016}}{2^{2014}}\)
\(=2^{2016-2014}\)
\(=2^2\)
\(=4\)
b)
\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)
Vì \(243< 343\)
Nên \(243^{100}< 343^{100}\)
Vậy \(3^{500}< 7^{300}\)
tthấy cách này dễ hơn :
(22016+22017+22018):(22014+22015+22016)
=22016.(1+2+22):22014.(1+2+22)
=(22016.7)+(22014.7)
=22
=4
a) \(A=2+6+8+10+....+2018\)
\(A=2\left(1+2+3+4+....+1009\right)\)
ta có \(1+2+3+4+...+n=\dfrac{\left(n+1\right).n}{2}\)
với n=1009 ta có \(1+2+3+....+1009=\dfrac{1010.1009}{2}\)
\(\Rightarrow A=2.\dfrac{1010.1009}{2}=1010.1009\)
\(B=2018-2017+2016-2015+....+2-1\)
\(B=1+1+1+1+....+1\)
tất cả có 2018 số mà cứ hiệu 2 số =1 vậy B có 1009 số 1
vậy \(B=1009\)
>