Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2012+2012 mũ 2 + 2012 mũ 3+.............+2012 mũ 72
A=2012^0+2012^1+2012^2+....+2012^72
2012A=2012^1+2012^2+.....+2012^73
2012A-A=2012^73-1
A=(2012^73-1)/2011<2012^73-1
Ta có A=1+2012+20122+...+201272
A.2012=2012+20122+...+201272+201273
A.2012-A=(2012+20122+...+201272+201273)-(1+2012+20122+...+201272)
A.2011=201273-1
A=(201273-1):2011
Vì 201273-1=201273-1 suy ra A<B
a) 5^23 và 6 . 5^22
Ta có: 5^23 = 5^22 . 5
Vì 5 < 6 nên 5^23 < 6 . 5^22
b) 7 . 2^13 và 2^16
Ta có: 2^16 = 2^13 . 2^3 = 2^13 . 8
Vì 7 < 8 nên 7 . 2^13 < 2^16
c) 21^15 và 27^5 . 49^8
Ta có: 21^15 = (3.7)^15 = 3^15 . 7^15
27^5 . 49^8 = (3^3)^5 . (7^2)^8 = 3^15 . 7^16
Vì 7^15 < 7^16 nên 21^15 < 27^5 . 49^8
\(G=1+2012+2012^2+2012^3+2012^4+...+2012^{71}+2012^{72}\)
\(\Rightarrow G=\dfrac{2012^{72+1}-1}{2012-1}\)
\(\Rightarrow G=\dfrac{2012^{73}-1}{2011}< H=2012^{73}-1\)
a) 2011 . 2013 = 2011 . ( 2012 + 1 ) = 2011 . 2012 + 2011
20122 = 2012 . 2012 = ( 2011 + 1 ) . 2012 = 2011 . 2012 + 2012
Vì 2011 . 2012 + 2011 < 2011 . 2012 + 2012 nên 2011 . 2013 < 20122
Chắc đề thế này!
\(S=1+2+2^2+2^3+2^4+...+2^{2014}\)
\(2S=2+2^2+2^3+2^4+...+2^{2015}\)
\(2S-S=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)
\(\Rightarrow2S-S=S=2^{2015}-1< 2^{2015}\Rightarrow S< D\)
20152 < 20122 x 7
chuẩn luôn **** đi